

The sheer joy of modern binary packaging

Scipy 2023 Tutorial

Packaging

Packaging from start to finish including binary extensions using modern tools.

Topics

	Schedule

	Overview of packaging for Python

	Environments and task runners

	The pyproject.toml file

	Tools for building and uploading

	Binary extensions

	Continuous Integration

	Handling Dependencies

Your Guides

	Henry Schreiner
	Maintainer of scikit-build, scikit-hep, cibuildwheel, build, meson-python, python-metadata, and other packages.

	Matt McCormick:
	Maintainer of dockcross, of Python packages for the Insight Toolkit (ITK)

	Jean-Christophe Fillion-Robin:
	Maintainer of scikit-build, scikit-ci, scikit-ci-addons and python-cmake-buildsystem

Schedule

	0:00: Overview of packaging
	
	SDists vs. wheels

	Pure Python vs. compiled packages

	Wheel vs conda packages

	PyPI / anaconda.org

	Links packaging documentation such as PyPA, Packaging Native

	0:15: Exercise
	
	Identify platforms supported for the xxx packages on PyPI and anaconda.org

	0:20: Virtual environments
	
	Setting up a virtual environment

	Setting up a conda environment

	Using a task runner (nox)

	0:30: Exercise writing a noxfile
	
	Take existing working package and add a simple noxfile

0:50: Break & catch up

	1:00: Pyproject.toml
	
	Essential specifications

	Optional specifications

	Specifying requirements

	Introduce the concept of “build-backend”

	1:10: Exercise
	
	Fill in the missing pieces in a project.toml for a sample package

	Build a source distribution for the package

	1:20: Building and uploading to PyPI: tools and package types
	
	Core tools

	Pipx

	build

	twine: the secure way to upload to PyPI

	For consolidated experience & dependency management

	Pdm (https://pdm.fming.dev/latest/)

	May be Hatch (https://hatch.pypa.io) (more like a replacement for tox and nox)

	Building a source distribution

	Building a wheel

	Discuss use of delocate/Auditwheel/…

	Difference between linux & manylinux wheels (internalize dependencies, glibc compatibility, …)

	1:35: Worked example/exercise: building a package and uploading to pypi
	
	Continuing from the the previous exercise, build a wheel for the package

	Register the package on the pypi testing server

	Upload the built distributions using twine

	Delete one of the uploaded files on pypi and try re-uploading (will fail)

	Introduce the idea of .post releases (it will happen to everyone who uploads)

1:45: Coffee break

	2:05: Binaries and dependencies: how scikit-build can make life easier
	
	Scikit-build overview & motivation

	Adding a minimal CMakeLists.txt

	Building the extension

	Adding options and controlling the build

	2:30: Exercise: add CMake project that generates python extension.
	
	Tie it into previous python project.

	Setup build caching

2:50: Break & catch up

	3:00: Automated building with cloud-based CI services
	
	GitHub action

	Pre-commit.yml

	Ruff

	https://cibuildwheel.readthedocs.io/en/stable/

	3:15: Exercise:
	
	Update previous example adding cibuildwheel support

	Linting using pre-commit + Ruff

	Automated PyPI release

	3:30: Handling dependencies
	
	“In-project” compilation

	External

	3:45: Exercise
	
	Add a dependency to the project

	pybind11 (in-project)

	lz4 (external)

Overview of packaging for Python

SDists vs. wheels

Pure Python vs. compiled packages

Wheel vs conda packages

PyPI / anaconda.org

Links packaging documentation such as PyPA, Packaging Native

Environments and task runners

You will see two very common recommendations when installing a package:

$ pip install <package> # Use only in virtual environment!
$ pip install --user <package> # Almost never use

Don’t use them unless you know exactly what you are doing! The first one will
try to install globally, and if you don’t have permission, will install to your
user site packages. In global site packages, you can get conflicting versions
of libraries, you can’t tell what you’ve installed for what, packages can
update and break your system; it’s a mess. And user site packages are worse,
because all installs of Python on your computer share it, so you might override
and break things you didn’t intend to. And with pip’s new smart solver,
updating packages inside a global environment can take many minutes and produce
unexpectedly solves that are technically “correct” but don’t work because it
backsolved conflicts to before issues were discovered.

There is a solution: virtual environments (libraries) or pipx (applications).

There are likely a few libraries (ideally just pipx) that you just have to
install globally. Go ahead, but be careful (and always use your system package
manager instead if you can, like brew on macOS [https://brew.sh] or the
Windows ones – Linux package managers tend to be too old to use for Python libraries).

Virtual Environments

Note

The following uses the standard library venv module. The virtualenv
module can be installed from PyPI, and works identically, though is a bit
faster and provides newer pip by default.

Python 3 comes with the venv module built-in, which supports making virtual environments.
To make one, you call the module with

$ python3 -m venv .venv

This creates links to Python and pip in .venv/bin, and creates a
site-packages directory at .venv/lib. You can just use .venv/bin/python if
you want, but many users prefer to source the activation script:

$. .venv/bin/activate

(Shell specific, but there are activation scripts for all common shells here).
Now .venv/bin has been added to your PATH, and usually your shell’s prompt
will be modified to indicate you are “in” a virtual environment. You can now
use python, pip, and anything you install into the virtualenv without
having to prefix it with .venv/bin/.

Attention

Check the version of pip installed! If it’s old, you might want to run
pip install -U pip or, for modern versions of Python, you can add
--upgrade-deps to the venv creation line.

To “leave” the virtual environment, you
undo those changes by running the deactivate function the activation added to
your shell:

deactivate

What about conda?

The same concerns apply to Conda. You should avoid installing things to the
base environment, and instead make environments and use those above. Quick tips:

$ conda config --set auto_activate_base false # turn off the default environment
$ conda env create -n some_name # or use paths with `-p`
$ conda activate some_name
$ conda deactivate

Pipx

There are many Python packages that provide a command line interface and are
not really intended to be imported (pip, for example, should not be
imported). It is really inconvenient to have to set up venvs for every command
line tool you want to install, however. pipx, from the makers of pip,
solves this problem for you. If you pipx install a package, it will be
created inside a new virtual environment, and just the executable scripts will
be exposed in your regular shell.

Pipx also has a pipx run <package> command, which will download a package and
run a script of the same name, and will cache the temporary environment for a
week. This means you have all of PyPI at your fingertips in one line on any
computer that has pipx installed!

Task runner (nox)

A task runner, like make [https://www.gnu.org/software/make/] (fully general), rake [https://ruby.github.io/rake/] (Ruby general),
invoke [https://www.pyinvoke.org] (Python general), tox [https://tox.readthedocs.io] (Python packages), or nox [https://nox.thea.codes] (Python
simi-general), is a tool that lets you specify a set of tasks via a common
interface. These can be a crutch, allowing poor packaging practices to be
employed behind a custom script, and they can hide what is actually happening.

Nox has two strong points that help with this concern. First, it is very
explicit, and even prints what it is doing as it operates. Unlike the older
tox, it does not have any implicit assumptions built-in. Second, it has very
elegant built-in support for both virtual and Conda environments. This can
greatly reduce new contributor friction with your codebase.

A daily developer is not expected to use nox for simple tasks, like running
tests or linting. You should not rely on nox to make a task that should be made
simple and standard (like building a package) complicated. You are not expected
to use nox for linting on CI, or sometimes even for testing on CI, even if
those tasks are provided for users. Nox is a few seconds slower than running
directly in a custom environment - but for new users and rarely run tasks, it
is much faster than explaining how to get setup or manually messing with
virtual environments. It is also highly reproducible, creating and destroying
the temporary environment each time by default.

You should use nox to make it easy and simple for new contributors to run
things. You should use nox to make specialized developer tasks easy. You should
use nox to avoid making single-use virtual environments for docs and other
rarely run tasks.

Since nox is an application, you should install it with pipx. If you use
Homebrew, you can install nox with that (Homebrew isolates Python apps it
distributes too, just like pipx).

Running nox

If you see a noxfile.py in a repository, that means nox is supported. You can start
by checking to see what the different tasks (called sessions in nox) are provided
by the noxfile author. For example, if we do this on packaging.python.org’s repository:

$ nox -l # or --list-sessions
Sessions defined in /github/pypa/packaging.python.org/noxfile.py:

- translation -> Build the gettext .pot files.
- build -> Make the website.
- preview -> Make and preview the website.
- linkcheck -> Check for broken links.

sessions marked with * are selected, sessions marked with - are skipped.

You can see that there are several different sessions. You can run them with -s:

$ nox -s preview

Will build and start up a preview of the site.

If you need to pass options to the session, you can separate nox options with
and the session options with --.

Writing a Noxfile

For this example, we’ll need a minimal test file for pytest to run. Let’s make
this file in a local directory:

test_nox.py

def test_runs():
 assert True

Let’s write our own noxfile. If you are familiar with pytest, this should look
familiar as well; it’s intentionally rather close to pytest. We’ll make a
minimal session that runs pytest:

noxfile.py
import nox

@nox.session()
def tests(session):
 session.install("pytest")
 session.run("pytest")

A noxfile is valid Python, so we import nox. The session decorator tells nox
that this function is going to be a session. By default, the name will be the
function name, the description will be the function docstring, it will run on
the current version of Python (the one nox is using), and it will make a
virtual environment each time the session runs, though all of this is
changeable via keyword arguments to session.

The session function will be given a nox.Session object that has various
useful methods. .install will install things with pip, and .run will run a
command in a sesson. The .run command will print a warning if you use an
executable outside the virtual environment unless external=True is passed.
Errors will exit the session.

Let’s expand this a little:

noxfile.py
import nox

@nox.session()
def tests(session: nox.Session) -> None:
 """
 Run our tests.
 """
 session.install("pytest")
 session.run("pytest", *session.posargs)

This adds a type annotation to the session object, so that IDE’s and type
checkers can help you write the code in the function. There’s a docstring,
which will print out nice help text when a user lists the sessions. And we pass
through to pytest anything the user passes in via session.posargs

Let’s try running it:

$ nox -s tests
nox > Running session tests
nox > Creating virtual environment (virtualenv) using python3.10 in .nox/tests
nox > python -m pip install pytest
nox > pytest
==================================== test session starts ====================================
platform darwin -- Python 3.10.5, pytest-7.1.2, pluggy-1.0.0
rootdir: /Users/henryschreiner/git/teaching/packaging
collected 1 item

test_nox.py . [100%]

===================================== 1 passed in 0.05s =====================================
nox > Session tests was successful.

Nox is really just doing the same thing we would do manually (and printing all
the steps except the exact details of creating the virtual environment). You can
see the virtual environment in .nox/tests!

Passing arguments through

Try passing -v to pytest.

Solution
$ nox -s tests -- -v

Virtual environments

How would you activate this environment?

Solution
$ source .nox/tests/bin/activate

In general, packages you work on daily are worth fully setting up with virtual
environments, but if you are new to development or just occasionally
contributing to a package, nox is a huge help.

The pyproject.toml file

Much research software is initially developed by hacking away in an interactive
setting, such as in a Jupyter Notebook [https://jupyter.org] or a Python shell.
However, at some point when you have a more-complicated workflow that you want
to repeat, and/or make available to others, it makes sense to package your
functions into modules and ultimately a software package that can be installed.
This lesson will walk you through that process.

Consider the rescale() function written as an exercise in the Software
Carpentry Programming with Python [https://swcarpentry.github.io/python-novice-inflammation/08-func/index.html]
lesson.

First, as needed, create your virtual environment and install NumPy with

$ virtualenv .venv
$ source .venv/bin/activate
$ pip install numpy

Then, in a Python shell or Jupyter Notebook, declare the function:

import numpy as np

def rescale(input_array):
 """Rescales an array from 0 to 1.

 Takes an array as input, and returns a corresponding array scaled so that 0
 corresponds to the minimum and 1 to the maximum value of the input array.
 """
 L = np.min(input_array)
 H = np.max(input_array)
 output_array = (input_array - L) / (H - L)
 return output_array

and call the function:

>>> rescale(np.linspace(0, 100, 5))
array([0. , 0.25, 0.5 , 0.75, 1.])

Creating our package in six lines

Let’s create a Python package that contains this function.

First, create a new directory for your software package, called package, and move into that:

$ mkdir package
$ cd package

You should immediately initialize an empty Git repository in this directory; if
you need a refresher on using Git for version control, check out the Software
Carpentry Version Control with Git [https://swcarpentry.github.io/git-novice/]
lesson. (This lesson will not explicitly remind you to commit your work after
this point.)

$ git init

Next, we want to create the necessary directory structure for your package.
This includes:

	a src directory, which will contain another directory called rescale for the source files of your package itself;

	a tests directory, which will hold tests for your package and its modules/functions (this can also go inside the rescale directory, but we recommend keeping it at the top level so that your test suite is not installed along with the package itself);

	a docs directory, which will hold the files necessary for documenting your software package.

$ mkdir -p src/rescale tests docs

(The -p flag tells mkdir to create the src parent directory for rescale.)

Putting the package directory and source code inside the src directory is not actually required;
instead, if you put the <package_name> directory at the same level as tests and docs then you could actually import or call the package directory from that location.
However, this can cause several issues, such as running tests with the local version instead of the installed version.
In addition, this package structure matches that of compiled languages, and lets your package easily contain non-Python compiled code, if necessary.

Inside src/rescale, create the files __init__.py and rescale.py:

$ touch src/rescale/__init__.py src/rescale/rescale.py

__init__.py is required to import this directory as a package, and should remain empty (for now).
rescale.py is the module inside this package that will contain the rescale() function;
copy the contents of that function into this file. (Don’t forget the NumPy import!)

The last element your package needs is a pyproject.toml file. Create this with

$ touch pyproject.toml

and then provide the minimally required metadata, which include information about the build system (hatchling) and the package itself (name and version):

contents of pyproject.toml
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "package"
version = "0.1.0"

The package name given here, “package,” matches the directory package that contains our project’s code. We’ve chosen 0.1.0 as the starting version for this package; you’ll see more in a later episode about versioning, and how to specify this without manually writing it here.

The only elements of your package truly required to install and import it are the pyproject.toml, __init__.py, and rescale.py files.
At this point, your package’s file structure should look like this:

.
├── docs
├── pyproject.toml
├── src
│ └── package
│ │ ├── __init__.py
│ │ └── rescale.py
└── tests

Installing and using your package

Now that your package has the necessary elements, you can install it into your virtual environment (which should already be active). From the top level of your project’s directory, enter

$ pip install -e .

The -e flag tells pip to install in editable mode, meaning that you can continue developing your package on your computer as you test it.

Then, in a Python shell or Jupyter Notebook, import your package and call the (single) function:

>>> import numpy as np
>>> from package.rescale import rescale
>>> rescale(np.linspace(0, 100, 5))

array([0. , 0.25, 0.5 , 0.75, 1.])

{: .output}

This matches the output we expected based on our interactive testing above! 😅

Your first test

Now that we have installed our package and we have manually tested that it works, let’s set up this situation as a test that can be automatically run using nox and pytest.

In the tests directory, create the test_rescale.py file:

touch tests/test_rescale.py

In this file, we need to import the package, and check that a call to the rescale function with our known input returns the expected output:

contents of tests/test_rescale.py
import numpy as np
from package.rescale import rescale

def test_rescale():
 np.testing.assert_allclose(
 rescale(np.linspace(0, 100, 5)),
 np.array([0., 0.25, 0.5, 0.75, 1.0]),
)

Next, take the noxfile.py you created in an earlier episode, and modify it to

	install numpy, necessary to run the package;

	install pytest, necessary to automatically find and run the test(s);

	install the package itself; and

	run the test(s)

with:

contents of noxfile.py
import nox

@nox.session
def tests(session):
 session.install('numpy', 'pytest')
 session.install('.')
 session.run('pytest')

Now, with the added test file and noxfile.py, your package’s directory structure should look like:

.
├── docs
├── noxfile.py
├── pyproject.toml
├── src
│ └── package
│ │ ├── __init__.py
│ │ └── rescale.py
└── tests
 └── test_rescale.py

(You may also see some __pycache__ directories, which contain compiled Python bytecode that was generated when calling your package.)

Have nox run your tests. This should give you some information about what
nox is doing, and show output along the lines of

$ nox
nox > Running session tests
nox > Creating virtual environment (virtualenv) using python in .nox/tests
nox > python -m pip install numpy pytest
nox > python -m pip install .
nox > pytest
=== test session starts ===
platform darwin -- Python 3.9.13, pytest-7.1.2, pluggy-1.0.0
rootdir: /Users/niemeyek/Desktop/rescale
collected 1 item

tests/test_rescale.py . [100%]

== 1 passed in 0.07s ==
nox > Session tests was successful.

This tells us that the output of the test function matches the expected result, and therefore the test passes! 🎉

We now have a package that is installed, can be interacted with properly, and has a passing test.
Next, we’ll look at other files that should be included with your package.

Informational metadata

We left the metadata in our project.toml quite minimal; we just had
a name and a version. There are quite a few other fields that can really help
your package on PyPI, however. We’ll look at them, split into categories:
Informational (like author, description) and Functional (like requirements).
There’s also a special dynamic field that lets you list values that are going
to come from some other source.

Name

Required. ., -, and _ are all equivalent characters, and may be normalized
to _. Case is unimportant. This is the only field that must exist statically
in this table.

name = "some_project"

Version

Required. Many backends provide ways to read this from a file or from a version
control system, so in those cases you would add "version" to the dynamic
field and leave it off here.

version = "1.2.3"
version = "0.2.1b1"

Description

A string with a short description of your project.

description = "This is a very short summary of a very cool project."

Readme

The name of the readme. Most of the time this is README.md or README.rst,
though there is a more complex mechanism if a user really desires to embed the
readme into your pyproject.toml file (you don’t).

readme = "README.md"
readme = "README.rst"

Authors and maintainers

This is a list of authors (or maintainers) as (usually inline) tables. A TOML table is very much like a Python dict.

authors = [
 {name="Me Myself", email="email@mail.com"},
 {name="You Yourself", email="email2@mail.com"},
]
maintainers = [
 {name="It Itself", email="email3@mail.com"},
]

Note that TOML supports two ways two write tables and two ways to write arrays, so you might see this in a different form, but it should be recognizable.

Keywords

A list of keywords for the project. This is mostly used to improve searchability.

keywords = ["example", "tutorial"]

URLs

A set of links to help users find various things for your code; some common ones
are Homepage, Source Code, Documentation, Bug Tracker, Changelog,
Discussions, and Chat. It’s a free-form name, though many common names get
recognized and have nice icons on PyPI.

Inline form
urls.Homepage = "https://pypi.org"
urls."Source Code" = "https://pypi.org"

Sectional form
[project.urls]
Homepage = "https://pypi.org"
"Source Code" = "https://pypi.org"

Classifiers

This is a collection of classifiers as listed at
https://pypi.org/classifiers/. You select the classifiers that match your
projects from there. Usually, this includes a “Development Status” to tell users
how stable you think your project is, and a few things like “Intended Audience”
and “Topic” to help with search engines. There are some important ones though:
the “License” (s) is used to indicate your license. You also can give an idea of
supported Python versions, Python implementations, and “Operating System”s as
well. If you have statically typed Python code, you can tell users about that,
too.

classifiers = [
 "Development Status :: 5 - Production/Stable",
 "Intended Audience :: Developers",
 "Intended Audience :: Science/Research",
 "License :: OSI Approved :: BSD License",
 "Operating System :: OS Independent",
 "Programming Language :: Python",
 "Programming Language :: Python :: 3",
 "Programming Language :: Python :: 3 :: Only",
 "Programming Language :: Python :: 3.8",
 "Programming Language :: Python :: 3.9",
 "Programming Language :: Python :: 3.10",
 "Programming Language :: Python :: 3.11",
 "Topic :: Scientific/Engineering",
 "Topic :: Scientific/Engineering :: Information Analysis",
 "Topic :: Scientific/Engineering :: Mathematics",
 "Topic :: Scientific/Engineering :: Physics",
 "Typing :: Typed",
]

License (special mention)

There also is a license field, but that was rather inadequate; it didn’t support
multiple licenses, for example. Currently, it’s best to indicate the license
with a Trove Classifier, and make sure your file is called LICENSE* so build
backends pick it up and include it in SDist and wheels. There’s work on
standardizing an update to the format in the future. You can manually specify a
license file if you want:

license = {file = "LICENSE"}

Verify file contents

Always verify the contents of your SDist and Wheel(s) manually to make sure the license file is included.

tar -tvf dist/package-0.0.1.tar.gz
unzip -l dist/package-0.0.1-py3-none-any.whl

Functional metadata

The remaining fields actually change the usage of the package.

Requires-Python

This is an important and sometimes misunderstood field. It looks like this:

requires-python = ">=3.7"

Pip will see if the current version of Python it’s installing for passes this
expression. If it doesn’t, pip will start checking older versions of the package
until it finds on that passes. This is how pip install numpy still works on
Python 3.7, even though NumPy has already dropped support for it.

You need to make sure you always have this and it stays accurate, since you
can’t edit metadata after releasing - you can only yank or delete release(s) and
try again.

Upper caps

Upper caps are generally discouraged in the Python ecosystem, but they are (even
more that usual) broken here, since this field was added to help users drop old
Python versions, and the idea it would be used to restrict newer versions was
not considered. The above procedures is not the right one for an upper cap!
Never upper cap this and instead use Trove Classifiers to tell users what
versions of Python your code was tested with.

Dependencies

Your package likely will need other packages from PyPI to run.

dependencies = [
 "numpy>=1.18",
]

You can list dependencies here without minimum versions, but if you have a lot of users, you might want minimum versions; pip will only upgrade an installed package if it’s no longer viable via your requirements. You can also use a variety of markers to specify operating system specific packages.

project.dependencies vs. build-system.requires

What is the difference between project.dependencies vs. build-system.requires?

Answer
build-system.requires describes what your project needs to “build”, that is,
produce an SDist or wheel. Installing a built wheel will not install anything
from build-system.requires, in fact, the pyproject.toml is not even present
in the wheel! project.dependencies, on the other hand, is added to the wheel
metadata, and pip will install anything in that field if not already present
when installing your wheel.

Optional Dependencies

Sometimes you have dependencies that are only needed some of the time. These can
be specified as optional dependencies. Unlike normal dependencies, these are
specified in a table, with the key being the option you pass to pip to install
it. For example:

[project.optional-dependenices]
test = ["pytest>=6"]
check = ["flake8"]
plot = ["matplotlib"]

Now, you can run pip install 'package[test,check]', and pip will install both
the required and optional dependencies pytest and flake8, but not
matplotlib.

Entry Points

A Python package can have entry points. There are three kinds: command-line
entry points (scripts), graphical entry points (gui-scripts), and general
entry points (entry-points). As an example, let’s say you have a main()
function inside __main__.py that you want to run to create a command
project-cli. You’d write:

[project.scripts]
project-cli = "project.__main__:main"

The command line name is the table key, and the form of the entry point is
package.module:function. Now, when you install your package, you’ll be able to
type project-cli on the command line and it will run your Python function.

Dynamic

Any field from above that are specified by your build backend instead should be
listed in the special dynamic field. For example, if you want hatchling to
read __version__.py from src/package/__init__.py:

[project]
name = "package"
dynamic = ["version"]

[tool.hatch]
version.path = "src/package/__init__.py"

All together

Now let’s take our previous example and expand it with more information. Here’s an example:

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "package"
version = "0.0.1"
authors = [
 { name="Example Author", email="author@example.com" },
]
description = "A small example package"
readme = "README.md"
license = { file="LICENSE" }
requires-python = ">=3.7"
classifiers = [
 "Programming Language :: Python :: 3",
 "License :: OSI Approved :: MIT License",
 "Operating System :: OS Independent",
]

[project.urls]
"Homepage" = "https://github.com/pypa/sampleproject"
"Bug Tracker" = "https://github.com/pypa/sampleproject/issues"

Tools for building and uploading

Core tools

Pipx

build

twine: the secure way to upload to PyPI

For consolidated experience & dependency management

Pdm

Hatch

Building a source distribution

Building a wheel

Discuss use of delocate/Auditwheel/…

Difference between linux & manylinux wheels

Binary extensions

Scikit-build overview & motivation

Continuous Integration

Continuous Integration (CI) allows you to perform tasks on a server
for various events on your repository (called triggers). For example,
you can use GitHub Actions (GHA) to run a test suite on every pull request.

GitHub Actions

GHA is made up of workflows which consist of actions. Workflows are files
in the .github/workflows folder ending in .yml.

Triggers

Workflows start with triggers, which define when things run. Here are three
triggers:

on:
 pull_request:
 push:
 branches:
 - main

This will run on all pull requests and pushes to main. You can also specify
specific branches for pull requests instead of running on all PRs (will run on
PRs targeting those branches only).

Running unit tests

Let’s set up a basic test. We will define a jobs dict, with a single job named
“tests”. For all jobs, you need to select an image to run on - there are images
for Linux, macOS, and Windows. We’ll use ubuntu-latest.

jobs:
 tests:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3

 - uses: actions/setup-python@v4
 with:
 python-version: "3.10"

 - name: Install package
 run: python -m pip install -e .[test]

 - name: Test package
 run: python -m pytest

This has five steps:

	Checkout the source (your repo).

	Prepare Python 3.10 (will use a preinstalled version if possible, otherwise will download a binary).

	Install your package with testing extras - this is just an image that will be removed at the end of the run, so “global” installs are fine. We also provide a nice name for the step.

	Run your package’s tests.

By default, if any step fails, the run immediately quits and fails.

Running in a matrix

You can parametrize values, such as Python version or operating system. Do do
this, make a strategy: matrix: dict. Every key in that dict (except include:
and exclude should be set with a list, and a job will be generated with every
possible combination of values. You can access these values via the matrix
variable; they do not “automatically” change anything.

For example:

example:
 strategy:
 matrix:
 onetwothree: [1, 2, 3]
 name: Job ${{ matrix.onetwothree }}

would produce three jobs, with names Job 1, Job 2, and Job 3. Elsewhere,
if you refer to the exmaple job, it will implicitly refer to all three.

This is commonly used to set Python and operating system versions:

tests:
 strategy:
 fail-fast: false
 matrix:
 python-version: ["3.7", "3.11"]
 runs-on: [ubuntu-latest, windows-latest, macos-latest]
 name: Check Python ${{ matrix.python-version }} on ${{ matrix.runs-on }}
 runs-on: ${{ matrix.runs-on }}
 steps:
 - uses: actions/checkout@v3
 with:
 fetch-depth: 0 # Only needed if using setuptools-scm

 - name: Setup Python ${{ matrix.python-version }}
 uses: actions/setup-python@v4
 with:
 python-version: ${{ matrix.python-version }}

 - name: Install package
 run: python -m pip install -e .[test]

 - name: Test package
 run: python -m pytest

There are two special keys: include: will take a list of jobs to include one
at a time. For example, you could add Python 3.9 on Linux (but not the others):

include:
 - python-version: 3.9
 runs-on: ubuntu-latest

include can also list more keys than were present in the original
parametrization; this will add a key to an existing job.

The exclude: key does the opposite, and lets you remove jobs from the matrix.

Other actions

GitHub Actions has the concept of actions, which are just GitHub repositories of the form org/name@tag, and there are lots of useful actions to choose from (and you can write your own by composing other actions, or you can also create them with JavaScript or Dockerfiles). Here are a few:

There are some GitHub supplied ones:

	actions/checkout [https://github.com/actions/checkout]: Almost always the first action. v2+ does not keep Git history unless with: fetch-depth: 0 is included (important for SCM versioning). v1 works on very old docker images.

	actions/setup-python [https://github.com/actions/setup-python]: Do not use v1; v2+ can setup any Python, including uninstalled ones and pre-releases. v4 requires a Python version to be selected.

	actions/cache [https://github.com/actions/cache]: Can store files and restore them on future runs, with a settable key.

	actions/upload-artifact [https://github.com/actions/upload-artifact]: Upload a file to be accessed from the UI or from a later job.

	actions/download-artifact [https://github.com/actions/download-artifact]: Download a file that was previously uploaded, often for releasing. Match upload-artifact version.

And many other useful ones:

	ilammy/msvc-dev-cmd [https://github.com/ilammy/msvc-dev-cmd]: Setup MSVC compilers.

	jwlawson/actions-setup-cmake [https://github.com/jwlawson/actions-setup-cmake]: Setup any version of CMake on almost any image.

	wntrblm/nox [https://github.com/wntrblm/nox]: Setup all versions of Python and provide nox.

	pypa/gh-action-pypi-publish [https://github.com/pypa/gh-action-pypi-publish]: Publish Python packages to PyPI.

	pre-commit/action [https://github.com/pre-commit/action]: Run pre-commit with built-in caching.

	conda-incubator/setup-miniconda [https://github.com/conda-incubator/setup-miniconda]: Setup conda or mamba on GitHub Actions.

	peaceiris/actions-gh-pages [https://github.com/peaceiris/actions-gh-pages]: Deploy built files to to GitHub Pages

	ruby/setup-miniconda [https://github.com/ruby/setup-ruby] Setup Ruby if you need it for something.

Pre-commit

Building wheels with cibuildwheel

Exercise

Add a CI file for your package.

Handling Dependencies

“In-project” compilation (pybind11)

External

See https://github.com/pypa/cibuildwheel/issues/1251#issuecomment-1236364876 for example

Tutorial Content Updates

You will find here the list of changes integrated in the tutorial after
it was first given at the SciPy 2018 conference.

Changes are grouped in sections identified using YYYY-MM representing
the year and month when the related changes were done.

The sections are ordered from most recent to the oldest.

2032-02

Started rewrite for modern packaging.

2018-08

Better handling data file in setup_py_exercise_small_example_package section

	Put package data in data directory.

	Reflect this change in the code.

	Add package_data to setup function.

2018-07

This is the first set of changes incorporating the feedback from
attendees.

Making a Python Package

	Add directory
setup_example/capitalize [https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/setup_example/capitalize]
discussed in setup_py_exercise_small_example_package section.

Building and Uploading to PyPI

	Update Installing a wheel tutorial adding
Install a package from TestPyPI <install_wheel_from_testpypi>
section.

Index

 nav.xhtml

 Table of Contents

 		
 The sheer joy of modern binary packaging

 		
 Schedule

 		
 Overview of packaging for Python

 		
 SDists vs. wheels

 		
 Pure Python vs. compiled packages

 		
 Wheel vs conda packages

 		
 PyPI / anaconda.org

 		
 Links packaging documentation such as PyPA, Packaging Native

 		
 Environments and task runners

 		
 Virtual Environments

 		
 Pipx

 		
 Task runner (nox)

 		
 Running nox

 		
 Writing a Noxfile

 		
 The pyproject.toml file

 		
 Creating our package in six lines

 		
 Installing and using your package

 		
 Your first test

 		
 Informational metadata

 		
 Name

 		
 Version

 		
 Description

 		
 Readme

 		
 Authors and maintainers

 		
 Keywords

 		
 URLs

 		
 Classifiers

 		
 License (special mention)

 		
 Functional metadata

 		
 Requires-Python

 		
 Dependencies

 		
 Optional Dependencies

 		
 Entry Points

 		
 Dynamic

 		
 All together

 		
 Tools for building and uploading

 		
 Core tools

 		
 Pipx

 		
 build

 		
 twine: the secure way to upload to PyPI

 		
 For consolidated experience & dependency management

 		
 Pdm

 		
 Hatch

 		
 Building a source distribution

 		
 Building a wheel

 		
 Discuss use of delocate/Auditwheel/…

 		
 Difference between linux & manylinux wheels

 		
 Binary extensions

 		
 Scikit-build overview & motivation

 		
 Continuous Integration

 		
 GitHub Actions

 		
 Triggers

 		
 Running unit tests

 		
 Running in a matrix

 		
 Other actions

 		
 Pre-commit

 		
 Building wheels with cibuildwheel

 		
 Exercise

 		
 Handling Dependencies

 		
 “In-project” compilation (pybind11)

 		
 External

_static/file.png

_static/minus.png

_static/plus.png

