

The Sheer Joy of Packaging!

Scipy 2018 Tutorial

Packaging

Packaging from start to finish for both PyPI and conda

Warning

The list of changes integrated in the tutorial after it was first
given at the SciPy 2018 conference can be found in the
Tutorial Content Updates document.

Topics

	Tutorial Schedule

	Overview

	Making a Python Package

	Building and Uploading to PyPi

	Binaries and Dependencies

	Conda Packages

If we have time: conda-forge [https://ocefpaf.github.io/2018-SciPy-python-packaging-tutorial/]

Your Guides

	Michael Sarahan:
	Conda-build tech lead, Anaconda, Inc.

	Matt McCormick:
	Maintainer of dockcross, of Python packages for the Insight Toolkit (ITK)

	Jean-Christophe Fillion-Robin:
	Maintainer of scikit-build, scikit-ci, scikit-ci-addons and python-cmake-buildsystem

	Filipe Fernandes:
	Conda-forge core team, Maintainer of folium and a variety of libraries for ocean sciences.

	Chris Barker:
	Python instructor for the Univ. Washington Continuing Education Program, Contributor to conda-forge project. Lead developer for assorted oceanography / oil spill packages.

	Jonathan Helmus:
	Conda-forge core team. Maintainer of Berryconda. Anaconda, Inc. Builds Tensorflow for fun.

Tutorial Schedule

Outline

How are we spending our afternoon?

Agenda

	0:00-0:20 Getting setup and overview of packaging

	0:20-0:45 python packages: the setup.py file

	Break

	1:00-1:30 Building and uploading to PyPI

	1:30-2:00 Binaries and dependencies

	2:00-2:45 Exercises

	Break

	3:00-3:15 Conda-build overview

	3:15-3:45 Exercise

	3:45-4:00 conda-forge

0:00-00:10 Getting setup for this Tutorial

There is a repo for this tutorial here:

https://github.com/python-packaging-tutorial/python-packaging-tutorial

or:

http://bit.ly/JoyOfPackaging

And the materials are rendered as html here:

https://python-packaging-tutorial.github.io/python-packaging-tutorial/

(linked from the git repo)

Clone that repo now – so you can follow along.

git clone https://github.com/python-packaging-tutorial/python-packaging-tutorial.git

0:10-00:20 Overview of packaging

Overview

	What is a package, anyway?

	Source/binary

	Wheel vs conda packages

	PyPI/anaconda.org

0:20-0:45 python packages: the setup.py file

Making a Python Package

	Python packages – what are they?

	The setup.py file

	Specifying requirements

	When and how to “pin” requirements

	Let’s make a package!

0:45-1:00 Building and uploading to PyPI

Building and Uploading to PyPi

	Packaging Terminology 101

	Building and publishing a python distribution

1:00-1:10 Break

1:10-1:30 Exercises

	Prepare environment.

	Build source distribution and wheel.

	Publish artifacts on PyPI.

1:30-2:00 Binaries and dependencies

Binaries and Dependencies

	Why we build Python packages with native binaries: 1)
performance and 2) library integration

	Different components of the binary build process and their role:
headers, libraries, compilers, linkers, build systems, system introspection
tools, package managers

	Basic requirements for binary compatibility: a) C-runtime library
compatibility and b) shared library compatibilty

	Joyous tools: scikit-build’s role in coordinating components of the binary
build process and conda’s role in resolving dependencies and creating compatible platform binaries

2:00-2:45 Exercises

	Build a Python package with a C++-based C-extension.

	Build a Python package with a Cython-based C-extension.

	Build a distributable Linux wheel package.

2:45-3:00 Break

3:00-3:15 Conda-build overview

Conda Packages

3:15-3:30 Exercises

	Write a conda recipe for the sample package from previous exercises (pure python)

	noarch packages

	Upload to anaconda cloud

3:30-3:45 Exercises

	Recipe for package with compiled extensions

	Add compiled extension (source will be provided to students) to sample package

	Modify recipe, if needed

	Rebuild the package

	Version pinning (python, numpy)

	Split packages - multi-ecosystem ones

	Compiler packages + pin_downstream

	Interoperation with scikit-build

3:45-4:00 Automated building with cloud-based CI services

conda-forge (optional; as time allows)

CI service overview & Conda-forge – what are the pieces and how do they fit together?

	Recipe format

	staged-recipes

	feedstocks

	Re-rendering and conda-smithy

	Updating package when new version released

	Future direction/community needs

	Invitation to sprints

	Contributing to Conda-forge

	Intro to conda-forge: staged-recipes, maintainer role, contributing to an existing package

	conda-smithy lint/rerender

	Example to go from the conda-skeleton to a PR on staged-recipes

	Comment on some special cases: cython extensions, non-python pkgs, the use of the CIs, etc.

	Exercise: put a package on staged-recipes

Overview

Packages

What is a “package”?

	In a broad sense, anything you install using your package manager

	Some kinds of packages have implied behavior and requirements

	Unfortunate overloading: python “package”: a folder that python imports

Package Managers and Repos

	Many package managers: some OS specific:

	apt, yum, dnf, chocolatey, homebrew, etc.

	Some language specific:

	NPM, pip, RubyGems

	And there are many online repositories of packages:

	PyPI, anaconda.org, CRAN, CPAN

But they all contain:

	Some form of dependency management

	Artifact and/or source repository

The idea is that you install something, and have it just work.

Package types:

A package can be essentially in two forms:

	source

	binary

Focusing now on the Python world:

As Python is a dynamic language, this distinction can get a bit blurred:

There is little difference between a source and binary package for a pure python package

But if there is any compiled code in there, building from source can be a challenge:

	Binary packages are very helpful

Source Packages

A source package is all the source code required to build the package.

Package managers (like pip) can automatically build your package from source.

But:

	Your system needs the correct tools installed, compilers, build tools, etc

	You need to have the dependencies available

	Sometimes it takes time, sometimes a LONG time

Binary Packages

A collection of code all ready to run.

	Everything is already compiled and ready to go – makes it easy.

But:

	It’s likely to be platform dependent

	May require dependencies to be installed

How do you manage that if the dependencies aren’t in the same language/system?

Python Packaging

There are two package managers widely used for Python.

pip: The “official” solution.

	Pulls packages from PyPI

	Handles both source and binary packages (wheels)

	Python only

conda: Widely used in the scipy community.

	Pulls packages from anaconda.org

	Binary only (does not compile code when installing)

	Supports other languages / libraries: C, Fortran, R, Perl, Java (anything, really)

	Manages Python itself!

OS package managers:

	Linux: apt, conda, dnf, homebrew, nix, pacman, spack, yum

	OS-X: conda, homebrew, macports, spack

	Windows: chocolatey, conda, cygwin, pacman (msys2)

Sometimes handle python packages – but we won’t talk about those here.

Making a Python Package

Specifying how to build your python package

Python Packages

What is a “package” in Python ?

Packages, modules, imports, oh my!

Modules

A python “module” is a single namespace, with a collection of values:

	functions

	constants

	class definitions

	really any old value.

A module usually corresponds to a single file: something.py

Packages

A “package” is essentially a module, except it can have other modules (and indeed other packages) inside it.

A package usually corresponds to a directory with a file in it called __init__.py and any number of python files or other package directories:

a_package
 __init__.py
 module_a.py
 a_sub_package
 __init__.py
 module_b.py

The __init__.py can be totally empty – or it can have arbitrary python code in it.

The code will be run when the package is imported – just like a module,

modules inside packages are not automatically imported. So, with the above structure:

import a_package

will run the code in a_package/__init__.py.

Any names defined in the
__init__.py will be available in:

a_package.a_name

but:

a_package.module_a

will not exist. To get submodules, you need to explicitly import them:

import a_package.module_a

https://docs.python.org/3/tutorial/modules.html#packages

The module search path

The interpreter keeps a list of all the places that it looks for modules or packages when you do an import:

import sys
for p in sys.path:
 print p

You can manipulate that list to add or remove paths to let python find modules on a new place.

And every module has a __file__ name that points to the path it lives in. This lets you add paths relative to where you are, etc.

NOTE: it’s usually better to use setuptools’ “develop” mode instead – see below.

Building Your Own Package

The very basics of what you need to know to make your own package.

Why Build a Package?

There are a bunch of nifty tools that help you build, install and
distribute packages.

Using a well structured, standard layout for your package makes it
easy to use those tools.

Even if you never want to give anyone else your code, a well
structured package simplifies development.

What is a Package?

A collection of modules

… and the documentation

… and the tests

… and any top-level scripts

… and any data files required

… and a way to build and install it…

Python packaging tools:

distutils: included with python

from distutils.core import setup

Getting clunky, hard to extend, maybe destined for deprecation …

setuptools: for extra features, technically third party

	present in most modern Python installations

“The Python Packaging Authority” – PyPA

https://www.pypa.io/en/latest/

setuptools

setuptools is an extension to distutils that provides a number of extensions:

from setuptools import setup

superset of the distutils setup

This buys you a bunch of additional functionality:

	auto-finding packages

	better script installation

	resource (non-code files) management

	develop mode

	a LOT more

http://pythonhosted.org//setuptools/

Where do I go to figure this out?

This is a really good guide:

Python Packaging User Guide:

https://packaging.python.org/

and a more detailed tutorial:

http://python-packaging.readthedocs.io/en/latest/

Follow one of them

There is a sample project here:

https://github.com/pypa/sampleproject

(this has all the complexity you might need…)

You can use this as a template for your own packages.

Here is an opinionated update – a little more fancy, but some good ideas:

https://blog.ionelmc.ro/2014/05/25/python-packaging/

Basic Package Structure:

package_name/
 bin/
 CHANGES.txt
 docs/
 LICENSE.txt
 MANIFEST.in
 README.txt
 setup.py
 package_name/
 __init__.py
 module1.py
 module2.py
 test/
 __init__.py
 test_module1.py
 test_module2.py

CHANGES.txt: log of changes with each release

LICENSE.txt: text of the license you choose (do choose one!)

MANIFEST.in: description of what non-code files to include

README.txt: description of the package – should be written in ReST
or Markdown (for PyPi):

setup.py: the script for building/installing package.

bin/: This is where you put top-level scripts

(some folks use scripts)

docs/: the documentation

package_name/: The main package – this is where the code goes.

test/: your unit tests. Options here:

Put it inside the package – supports

$ pip install package_name
>> import package_name.test
>> package_name.test.runall()

Or keep it at the top level.

Some notes on that:

` Where to put Tests <http://pythonchb.github.io/PythonTopics/where_to_put_tests.html>`_

The setup.py File

Your setup.py file is what describes your package, and tells setuptools how to package, build and install it

It is python code, so you can add anything custom you need to it

But in the simple case, it is essentially declarative.

http://docs.python.org/3/distutils/

What Does setup.py Do?

	Version & package metadata

	List of packages to include

	List of other files to include

	List of dependencies

	List of extensions to be compiled (if you are not using scikit-build [https://scikit-build.org].

An example setup.py:

 from setuptools import setup

 setup(
 name='PackageName',
 version='0.1.0',
 author='An Awesome Coder',
 author_email='aac@example.com',
 packages=['package_name', 'package_name.test'],
 scripts=['bin/script1','bin/script2'],
 url='http://pypi.python.org/pypi/PackageName/',
 license='LICENSE.txt',
 description='An awesome package that does something',
 long_description=open('README.txt').read(),
 install_requires=[
 "Django >= 1.1.1",
 "pytest",
],
)

setup.cfg

Provides a way to give the end user some ability to customize the install

It’s an ini style file:

[command]
option=value
...

simple to read and write.

command is one of the Distutils commands (e.g. build_py, install)

option is one of the options that command supports.

Note that an option spelled --foo-bar on the command-line is spelled
foo_bar in configuration files.

Running setup.py

With a setup.py script defined, setuptools can do a lot:

Builds a source distribution (a tar archive of all the files needed to build and install the package):

python setup.py sdist

Builds wheels:

./setup.py bdist_wheel

(you need the wheel package for this to work:)

pip install wheel

Build from source:

python setup.py build

And install:

python setup.py install

Develop mode

Install in “develop” or “editable” mode:

python setup.py develop

or:

pip install .

Under Development

Develop mode is really, really nice:

$ python setup.py develop

or:

$ pip install -e ./

(the e stands for “editable” – it is the same thing)

It puts a link (actually *.pth files) into the python installation to your code, so that your package is installed, but any changes will immediately take effect.

This way all your test code, and client code, etc, can all import your package the usual way.

No sys.path hacking

Good idea to use it for anything more than a single file project.

	Install

	Development Install

	Copies package into site-packages

	Adds a .pth file to site-packages,
pointed at package source root

	Used when creating conda packages

	Used when developing software locally

	Normal priority in sys.path

	End of sys.path (only found if
nothing else comes first)

https://grahamwideman.wikispaces.com/Python-+site-package+dirs+and+.pth+files

Aside on pip and dependencies

	pip does not currently have a solver: http://github.com/pypa/pip/issues/988

	pip may replace packages in your environment with incompatible versions. Things will break when that happens.

	use caution (and ideally, disposable environments) when using pip

Getting Started With a New Package

For anything but a single-file script (and maybe even then):

	Create the basic package structure

	Write a setup.py

	pip install -e .

	Put some tests in package/test

	pytest in the test dir, or pytest --pyargs package_name

or use “Cookie Cutter”:

https://cookiecutter.readthedocs.io/en/latest/

Exercise: A Small Example Package

	Create a small package

	package structure

	setup.py

	python setup.py develop

	at least one working test

Start with the silly code in the tutorial repo in:

python-packaging-tutorial/setup_example/

or you can download a zip file here:

capitalize.zip

capitalize

capitalize is a useless little utility that will capitalize the words in a text file.

But it has the core structure of a python package:

	a library of “logic code”

	a command line script

	a data file

	tests

So let’s see what’s in there:

$ ls
capital_mod.py test_capital_mod.py
cap_data.txt main.py
cap_script.py sample_text_file.txt

What are these files?

	capital_mod.py
	The core logic code

	main.py
	The command line app

	test_capital_mod.py
	Test code for the logic

	cap_script.py
	top-level script

	cap_data.txt
	data file

	sample_text_file.txt
	sample example file to test with.

Try it out:

$ cd capitalize/

$ python3 cap_script.py sample_text_file.txt

Capitalizing: sample_text_file.txt and storing it in
sample_text_file_cap.txt

I'm done

So it works, as long as you are in the directory with all the code.

Setting up a package structure

Create a basic package structure:

package_name/
 bin/
 README.txt
 setup.py
 package_name/
 __init__.py
 module1.py
 test/
 __init__.py
 test_module1.py

Let’s create all that for capitalize:

Make the package:

$ mkdir capitalize

$ cd capitalize/

$ touch __init__.py

Move the code into it:

 $ mv ../capital_mod.py ./
$ mv ../main.py ./

Create a dir for the tests:

$ mkdir test

Move the tests into that:

$ mv ../test_capital_mod.py test/

Create a dir for the script:

$ mkdir bin

Move the script into that:

$ mv ../cap_script.py bin

Create directory for data:

$ mkdir data

Move data into that:

$ mv ../cap_data.txt data

Now we have a package!

Let’s try it:

$ python bin/cap_script.py
Traceback (most recent call last):
 File "bin/cap_script.py", line 8, in <module>
 import capital_mod
ImportError: No module named capital_mod

OK, that didn’t work. Why not?

Well, we’ve moved everytihng around:

The modules don’t know how to find each other.

Let’s Write a setup.py

#!/usr/bin/env python

from setuptools import setup

setup(name='capitalize',
 version='1.0',
 # list folders, not files
 packages=['capitalize',
 'capitalize.test'],
 scripts=['capitalize/bin/cap_script.py'],
 package_data={'capitalize': ['data/cap_data.txt']},
)

(remember that a “package” is a folder with a __init__.py__ file)

That’s about the minimum you can do.

Save it as setup.py outside the capitalize package dir.

Install it in “editable” mode:

$ pip install -e ./
Obtaining file:///Users/chris.barker/HAZMAT/Conferences/SciPy-2018/PackagingTutorial/TutorialDay/capitalize
Installing collected packages: capitalize
 Running setup.py develop for capitalize
Successfully installed capitalize

Try it out:

$ cap_script.py
Traceback (most recent call last):
 File "/Users/chris.barker/miniconda2/envs/py3/bin/cap_script.py", line 6, in <module>
 exec(compile(open(__file__).read(), __file__, 'exec'))
 File "/Users/chris.barker/HAZMAT/Conferences/SciPy-2018/PackagingTutorial/TutorialDay/capitalize/capitalize/bin/cap_script.py", line 8, in <module>
 import capital_mod
ModuleNotFoundError: No module named 'capital_mod'

Still didn’t work – why not?

We need to update some imports.

in cap_script.py:

import main
import capital_mod

should be:

from capitalize import main
from capitalize import capital_mod

and similarly in main.py:

from capitalize import capital_mod

And try it:

$ cap_script.py sample_text_file.txt

 Traceback (most recent call last):
File ".../cap_script.py", line 6, in <module>
 exec(compile(open(__file__).read(), __file__, 'exec'))
File ".../cap_script.py", line 8, in <module>
 from capitalize import capital_mod
File "/.../capital_mod.py", line 35, in <module>
 special_words = load_special_words(get_datafile_name())
File ".../capital_mod.py", line 21, in load_special_words
 with open(data_file_name) as data_file:
FileNotFoundError: [Errno 2] No such file or directory: '.../capitalize/cap_data.txt'

Our script cannot find the data file. We changed it’s location but not the path
in the capital_mod.py.

Let’s fix this. On line 32 replace:

return Path(__file__).parent / "cap_data.txt"

with:

return Path(__file__).parent / "data/cap_data.txt"

Running the tests:

Option 1: cd to the test dir:

$ cd capitalize/test/

$ pytest
$ ===================================
 test session starts
 ====================================
...

Traceback:
test_capital_mod.py:14: in <module>
 import capital_mod
E ModuleNotFoundError: No module named 'capital_mod'

Whoops – we need to fix that import, too:

from capitalize import capital_mod

And now we’re good:

$ pytest
======test session starts =====

collected 3 items

test_capital_mod.py ...

============== 3 passed in 0.06 seconds ============

You can also run the tests from anywhere on the command line:

$ pytest --pyargs capitalize

 collected 3 items

 capitalize/capitalize/test/test_capital_mod.py ... [100%]

 =============== 3 passed in 0.03 seconds ==========

Making Packages the Easy Way

To auto-build a full package structure:

[image: _images/cookiecutter.png]
Rather than doing it by hand, you can use the nifty “cookie cutter” project:

https://cookiecutter.readthedocs.io/en/latest/

And there are a few templates that can be used with that.

The core template written by the author:

https://github.com/audreyr/cookiecutter-pypackage

And one written by the author of the opinionated blog post above:

https://github.com/ionelmc/cookiecutter-pylibrary

Either are great starting points.

conda install -c conda-forge cookiecutter

or

pip install cookiecutter

No time for that now :-(

Handling Requirements

Only the simplest of packages need only the Python standard library.

Requirements in setup.py

#!/usr/bin/env python
from distutils.core import setup

setup(name='mypkg',
 version='1.0',
 # list folders, not files
 packages=['mypkg', 'mypkg.subpkg'],
 install_requires=['click'],
)

Requirements in requirements.txt

Common Mistake:

	requirements.txt often from pip freeze

	Pinned way too tightly. OK for env creation, bad for packaging.

	Donald Stufft (PyPA): Abstract vs. Concrete dependencies [https://caremad.io/posts/2013/07/setup-vs-requirement]

Requirements in setup.cfg (ideal)

[metadata]
name = my_package
version = attr:
src.VERSION

[options]
packages = find:
install_requires = click

Parse-able without execution, unlike setup.py

configuring setup using setup cfg files [http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files]

Break time!

Up next: producing redistributable artifacts

Building and Uploading to PyPi

Learning Objectives

In the following section we will …

	Review the packaging terminology

	Understand how to build, package and publish a python package

Packaging Terminology 101

Introduction

This section reviews the key python packaging concepts and definitions.

PyPI

PyPI is the default Package Index [https://packaging.python.org/glossary/#term-package-index] for the Python community.
It is open to all Python developers to consume and distribute their distributions.

There are two instances of the Package Index:

	PyPI: Python Package Index hosted at https://pypi.org/

	TestPyPI: a separate instance of the Python Package Index (PyPI) that allows you to try out the
distribution tools and process without worrying about affecting the real index.
TestPyPI is hosted at https://test.pypi.org

Reference: https://packaging.python.org/glossary/#term-python-package-index-pypi

pip

The PyPA [https://www.pypa.io/en/latest/] recommended tool for installing Python packages.

A multi-faceted tool:

	It is an integration frontend that takes a set of package requirements (e.g. a requirements.txt file)
and attempts to update a working environment to satisfy those requirements. This may require locating,
building, and installing a combination of distributions.

	It is a build frontend that can takes arbitrary source trees or source distributions and builds wheels
from them.

Reference: http://pip.readthedocs.io/

PyPA

The Python Packaging Authority (PyPA) is a working group that maintains many of the relevant
projects in Python packaging.

The associated website https://www.pypa.io references the PyPA Goals, Specifications and Roadmap
as well as Python Packaging User Guide [https://packaging.python.org/], a collection of tutorials
and references to help you distribute and install Python packages with modern tools.

Reference: https://www.pypa.io

Source distribution

	Synonyms: sdist, Source release

	provides metadata + source files

	needed for installing

	by a tool like pip

	or for generating a Built Distribution

Reference: https://packaging.python.org/glossary/#term-source-distribution-or-sdist

Built Distribution

	Synonyms: bdist

	provides metadata + pre-built files

	only need to be moved (usually by pip) to the correct locations on the target system

Reference: https://packaging.python.org/glossary/#term-built-distribution

Python Distribution: pure vs non-pure

	pure:

	Not specific to a CPU architecture

	No ABI (Application Binary Interface) [https://en.wikipedia.org/wiki/Application_binary_interface]

	non-pure

	ABI [https://en.wikipedia.org/wiki/Application_binary_interface]

	Platform specific

Reference: https://packaging.python.org/glossary/#term-module

Binary Distribution

	is a Built Distribution

	is non-pure

	uses platform-specific compiled extensions

Reference: https://packaging.python.org/glossary/#term-binary-distribution

Wheel

	a Built Distribution

	a ZIP-format archive with .whl extension

	{distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl

	described by PEP 427 [https://www.python.org/dev/peps/pep-0427/]

Reference: https://packaging.python.org/glossary/#term-wheel

Wheels vs. Conda packages

	Wheels

	Conda packages

	Employed by pip, blessed by PyPA

	Foundation of Anaconda ecosystem

	Used by any python installation

	Used by conda python installations

	Mostly specific to Python ecosystem

	General purpose (any ecosystem)

	Good mechanism for specifying range
of python compatibility

	Primitive support for multiple
python versions (noarch)

	Depends on static linking or other
system package managers to provide
core libraries

	Can bundle core system-level shared
libraries as packages, and resolve
dependencies

To learn more about Conda, see Conda Packages section.

Virtual Environment

An isolated Python environment that allows packages to be installed for use by a
particular application, rather than being installed system wide.

Learn more reading Creating Virtual Environments [https://packaging.python.org/tutorials/installing-packages/#creating-and-using-virtual-environments]

Build system

Synonym: Build backend

	setuptools [https://setuptools.readthedocs.io] associated with the wheel [https://wheel.readthedocs.io] package
form the default build system. They support the creation of source and built distributions based on a setup.py and
optionally a setup.cfg file.

	flit [https://flit.readthedocs.io/en/latest/] is an alternative backend allowing to also create (and also publish)
built distributions.

Python Package Lifecycle

[image: _images/python-package-life-cycle.png]

Tutorial

Introduction

This section discusses how to build python packages (or distributions) and publish
them in a central repository to streamline their installation. Finally, we conclude
with exercises where we publish a package with the Test Python Package Index [http://test.pypi.org/].

Creating an environment

Before developing or building your distribution, we highly recommend to create a
dedicated environment. This is supported by both conda and pip.

Building a source distribution

By leveraging the setup.py script, setuptools can build a source
distribution (a tar archive of all the files needed to build and install the package):

$ python setup.py sdist

$ ls -1 dist
SomePackage-1.0.tar.gz

Building a wheel

$ pip wheel . -w dist

$ ls -1 dist
SomePackage-1.0-py2.py3-none-any.whl

This is equivalent to:

$ python setup.py bdist_wheel

Installing a wheel

	Install a package from PyPI:

$ pip install SomePackage
[...]
Successfully installed SomePackage

	Install a package from TestPyPI:

$ pip install -i https://test.pypi.org/simple SomePackage
[...]
Successfully installed SomePackage

	Install a package file:

$ pip install SomePackage-1.0-py2.py3-none-any.whl
[...]
Successfully installed SomePackage

For more details, see QuickStart guide from pip documentation [https://pip.pypa.io/en/stable/quickstart/].

Installing a source distribution

$ pip install SomePackage-1.0.tar.gz
 [...]
Successfully installed SomePackage

It transparently builds the associated wheel and install it.

Publishing to PyPI

twine [https://twine.readthedocs.io] utility is used for publishing
Python packages on PyPI.

It is available as both a conda and a pypi package.

Learn more reading Using TestPiPY [https://packaging.python.org/guides/using-testpypi/].

Exercises

Exercise 1: Prepare environment

	In the context of this tutorial, because participants already installed miniconda [https://github.com/python-packaging-tutorial/python-packaging-tutorial#installation-instructions],
we will create a conda environment and install packages using conda install SomePackage.

create and activate a dedicated environment named "hello-pypi"
conda create -n hello-pypi -y -c conda-forge
conda activate hello-pypi

install pip, wheel and twine
conda install -y twine wheel pip

	Create an account on TestPyPI (https://test.pypi.org/account/register/)

Exercise 2: Build source distribution and wheel

	Download [https://github.com/python-packaging-tutorial/hello-pypi/archive/master.zip] (or
checkout [https://github.com/python-packaging-tutorial/hello-pypi] using git) the sources
of our hello-pypi sample project:

conda install -y wget
wget https://github.com/python-packaging-tutorial/hello-pypi/archive/master.zip

	Extract sources

conda install -y unzip
unzip master.zip
cd hello-pypi-master

	Modify package name so that it is unique

	Then, build the source distribution:

$ python setup.py sdist

	And finally, build the wheel:

$ pip wheel . -w dist

	Make sure artifacts have been generated in the dist subdirectory.

Exercise 3: Publish artifacts on PyPI

$ twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Bonus Exercise 4: Publish artifacts automating authentication

	Delete hello-pypi-master directory and extract archive again.

	Update name of package and rebuild source distribution and wheel.

	Create file .pypirc in your home directory with the following content:

[distutils]
index-servers=
 pypi
 testpypi

[testpypi]
repository: https://test.pypi.org/legacy/
username: your testpypi username
password: your testpypi password

[pypi]
username: your testpypi username
password: your testpypi password

	Publish package on TestPyPI:

$ twine upload --repository testpypi dist/*

Omitting the -repository testpypi argument allows to upload
to the regular PyPI server.

Bonus Exercise 5: Setting up continuous integration

	See branch master-with-ci [https://github.com/python-packaging-tutorial/hello-pypi/tree/master-with-ci]
branch associated with hello-pypi example.

Resources

Where do I go to figure this out?

This is a really good guide:

Python Packaging User Guide:

https://packaging.python.org/

and a more detailed tutorial:

http://python-packaging.readthedocs.io/en/latest/

Follow one of them

There is a sample project here:

https://github.com/pypa/sampleproject

(this has all the complexity you might need…)

You can use this as a template for your own packages.

Here is an opinionated update – a little more fancy, but some good ideas:

https://blog.ionelmc.ro/2014/05/25/python-packaging/

Rather than doing it by hand, you can use the nifty “cookie cutter” project:

https://cookiecutter.readthedocs.io/en/latest/

And there are a few templates that can be used with that.

The core template written by the author:

https://github.com/audreyr/cookiecutter-pypackage

And one written by the author of the opinionated blog post above:

https://github.com/ionelmc/cookiecutter-pylibrary

Either are great starting points.

Binaries and Dependencies

Learning Objectives

In this section we will …

	Understand why we build Python packages with native binaries: 1)
performance and 2) library integration

	Understand different components of the binary build process and their role:
headers, libraries, compilers, linkers, build systems, system introspection
tools, package managers

	Understand basic requirements for binary compatibility: a) C-runtime library
compatibility and b) shared library compatibilty

	Understand scikit-build’s role in coordinating components of the binary
build process and conda’s role in resolving dependencies and creating compatible platform binaries

Tutorial

Introduction

This section discusses the creation of Python packages that contain native
binaries.

First, we explain why building Python packages with native binaries is often
desirable or necessary for scientific applications.

Next, an overview of the requirements to build native binaries is provided.
Within this the context, we explain how scikit-build and conda-build make
life easier when we want to satisfy these requirements.

Finally, run an exercise where we build a native Python wth native binaries
package and analyze the different stages of the build process.

Motivation

Scientific computing applications demand higher performance than other
domains because of the:

	Size of the datasets to be analyzed

	Complexity of the algorithms evaluated

In order to achieve high performance, programs can:

	Minimized the number of operations on the CPU required to acheive a certain
task

	Execute in parallel to leverage multi-core, many-core, and GPGPU system
architectures

	Carefully and precisely manage memory allocation and use

Greater performance is achieved with native binaries over CPython because:

	Tasks are compiled down to minimal processor operations,
as opposed to high level programming language instructions that must be
interpreted

	Parallel computing is not impared by CPython’s Global Interpreter Lock
(GIL) [https://wiki.python.org/moin/GlobalInterpreterLock]

	Memory can be managed explicitly and deterministically

Many existing scientific codes are written in programming languages other than Python.
It is necessary to re-use these libraries since:

	Resources are not available to re-implement work that is sometimes the
result of multiple decades of effort from multiple researchers.

	The scientific endeavor is built on the practice of reproducing and building on the top of the efforts of our predecessors.

The lingua franca of computing is the C programming language because
most operating systems themselves are written in C.

As a consequence,

	Native binaries reflect characteristics and compatibility with of the C language

	The reference implementation of Python, CPython, is implemented in C

	CPython supports binary extension modules written in C

	Most other pre-compiled programming languages have a compatibility layer
with C

	CPython is an excellent language to integrate scientific codes!

Common programming languages compiled into native libraries for scientific
computing include:

	Fortran

	C

	C++

	Cython

	Rust

Build Components and Requirements

Build component categories:

	build tools
	Tools use in the build process, such as the compiler, linker, build systems,
system introspection tool, and package manager

Example compilers:

	GCC

	Clang

	Visual Studio

Compilers translate source code from a human readable to a machine readable
form.

Example linkers:

	ld

	ld.gold

	link.exe

Linkers combine the results of compilers into a shared library that is
executed at program runtime.

Example build systems:

	distutils.build_ext

	Unix Makefiles

	Ninja

	MSBuild in Visual Studio

Builds systems coordinate invocation of the compiler and linker, passing
flags, and only out-of-date build targets are built.

Example system introspection tools:

	CMake

	GNU Autotools

	Meson

System introspection tools examine the host system for available build tools,
the location of build dependencies, and properties of the build target to
generate the appropriate build system configuration files.

Example package managers:

	conda

	pip

	apt

	yum

	chocolatey

	homebrew

Package managers resolve dependencies so the required build host artifacts are
available for the build.

	build host artifacts
	These are files required on the host system performing the build. This
includes header files, *.h files, which define the C program symbols,
i.e. variable and function names, for the native binary with which we want
to integrate. This also usually includes the native binaries themselves,
i.e. the executable or shared library. An important exception to this rule
is libpython, which we do not need on some platforms due to weak linking
rules [https://scikit-build.readthedocs.io/en/latest/cmake-modules/targetLinkLibrariesWithDynamicLookup.html].

	target system artifacts
	These are artifacts intended to be run on the target system, typically the
shared library C-extension.

When the build host system is different from the target system, we are
cross-compiling.

For example, when we are building a Linux Python package on macOS is
cross-compiling. In this case macOS is the host system and Linux is the
target system.

Distributable binaries must use a compatible C-runtime.

The table below lists the different C runtime implementations, compilers and
their usual distribution mechanisms for each operating systems.

	
	Linux

	MacOSX

	Windows

	C runtime

	GNU C Library (glibc) [https://en.wikipedia.org/wiki/GNU_C_Library]

	libSystem library [https://www.safaribooksonline.com/library/view/mac-os-x/0596003560/ch05s02.html]

	Microsoft C run-time library [https://en.wikipedia.org/wiki/Microsoft_Windows_library_files#Runtime_libraries]

	Compiler

	GNU compiler (gcc) [https://en.wikipedia.org/wiki/GNU_Compiler_Collection]

	clang [https://en.wikipedia.org/wiki/Clang]

	Microsoft C/C++ Compiler (cl.exe)

	Provenance

	Package manager [https://en.wikipedia.org/wiki/Package_manager]

	OSX SDK within XCode [https://en.wikipedia.org/wiki/Xcode#Version_comparison_table]

	
	Microsoft Visual Studio [https://en.wikipedia.org/wiki/Microsoft_Visual_Studio]

	Microsoft Windows SDK [https://en.wikipedia.org/wiki/Microsoft_Windows_SDK]

Linux C-runtime compatibility is determined by the version of glibc used
for the build.

The glibc library shared by the system is forwards compatible but not
backwards compatible. That is, a package built on an older system will
work on a newer system, while a package built on a newer system will not
work on an older system.

The manylinux [https://github.com/pypa/manylinux] project provides Docker
images that have an older version of glibc to use for distributable Linux
packages.

The C-runtime on macOS is determined by a build time option, the osx
deployment target, which defines the minmum version of macOS to support, e.g.
10.9.

A macOS system comes with support for running building binaries for its version of
OSX and older versions of OSX.

The XCode toolchain comes with SDK’s that support multiple target versions of OSX.

When building a wheel, this can be specified with –plat-name:

python setup.py bdist_wheel --plat-name macosx-10.6-x86_64

The C-runtime used on Windows is associated with the version of Visual Studio.

	
	Architecture

	CPython Version

	x86 (32-bit)

	x64 (64-bit)

	3.5 and above

	Visual Studio 14 2015

	Visual Studio 14 2015 Win64

	3.3 to 3.4

	Visual Studio 10 2010

	Visual Studio 10 2010 Win64

	2.7 to 3.2

	Visual Studio 9 2008

	Visual Studio 9 2008 Win64

Distributable binaries are also built to be compatible with a certain
CPU architecture class. For example

	x86_64 (currently the most common)

	x86

	ppc64le

Scientific Python Build Tools

scikit-build is an improved build system generator for CPython C/C++/Fortran/Cython
extensions.

scikit-build provides better support for additional compilers, build
systems, cross compilation, and locating dependencies and their associated
build requirements.

The scikit-build package is fundamentally just glue between
the setuptools Python module and CMake [https://cmake.org/].

To build and install a project configured with scikit-build:

pip install .

To build and install a project configured with scikit-build for development:

pip install -e .

To build and package a project configured with scikit-build:

pip wheel -w dist .

Conda is an open source package management system and environment management system that runs on Windows, macOS and Linux.

Conda quickly installs, runs and updates packages and their dependencies. Conda easily creates, saves, loads and switches between environments on your local computer.

Conda was created for Python programs, but it can package and distribute software for any language.

scikit-build and conda abstract away and manage platform-specific details for you!

Exercises

Exercise 1: Build a Python Package with a C++ Extension Module

Download the hello-cpp [https://github.com/python-packaging-tutorial/hello-cpp] example C++ project and build a wheel package
with the commands:

cd hello-cpp
pip wheel -w dist --verbose .

Examine files referenced in the build output. What is the purpose of all
referenced files?

Exercise 2: Build a Python Package with a Cython Extension Module

Download the hello-cython [https://github.com/python-packaging-tutorial/hello-cython] example C++ project and build a wheel package
with the commands:

cd hello-cython
pip wheel -w dist --verbose .

Examine files referenced in the build output. What is the purpose of all
referenced files?

Bonus Exercise 3: Build a Distributable Linux Wheel Package

If Docker is installed, create a dockcross [https://github.com/dockcross/dockcross] manylinux [https://github.com/pypa/manylinux] bash driver script.
From a bash shell, run:

cd into the hello-cpp project from Exercise 1
cd hello-cpp
docker run --rm dockcross/manylinux-x64 > ./dockcross-manylinux-x64
chmod +x ./dockcross-manylinux-x64

The dockcross driver script simplifies execution of commands in the isolated
Docker build environment that use sources in the current working directory.

To build a distributable Python 3.6 Python wheel, run:

./dockcross-manylinux-x64 /opt/python/cp36-cp36m/bin/pip wheel -w dist .

Which will output:

Processing /work
Building wheels for collected packages: hello-cpp
Running setup.py bdist_wheel for hello-cpp ... done
Stored in directory: /work/dist
Successfully built hello-cpp

and produce the wheel:

./dist/hello_cpp-1.2.3-cp36-cp36m-linux_x86_64.whl

To find the version of glibc required by the extension, run:

./dockcross-manylinux-x64 bash -c 'cd dist && unzip -o hello_cpp-1.2.3-cp36-cp36m-linux_x86_64.whl && objdump -T hello/_hello.cpython-36m-x86_64-linux-gnu.so | grep GLIBC'

What glibc version compatibility is required for this binary?

manylinux: https://github.com/pypa/manylinux

Bonus Exercise 4: Setting up continuous integration

	See branch master-with-ci [https://github.com/python-packaging-tutorial/hello-cpp/tree/master-with-ci]
branch associated with hello-cpp example:

	Use scikit-ci [http://scikit-ci.readthedocs.io] for simpler and centralized CI configuration for
Python extensions.

	Use scikit-ci-addons [http://scikit-ci-addons.readthedocs.org/], a set of scripts useful
to help drive CI.

	On CircleCI, use manylinux dockcross images including scikit-build [https://pypi.python.org/pypi/scikit-build],
cmake [https://pypi.python.org/pypi/cmake] and ninja [https://pypi.python.org/pypi/ninja] packages.

Conda Packages

Building Conda Packages

A package system for anything…

Wheels vs. Conda packages

	Wheels

	Conda packages

	Employed by pip, blessed by PyPA

	Foundation of Anaconda ecosystem

	Used by any python installation

	Used by conda python installations

	Mostly specific to Python ecosystem

	General purpose (any ecosystem)

	Good mechanism for specifying range
of python compatibility

	Primitive support for multiple
python versions (noarch)

	Depends on static linking or other
system package managers to provide
core libraries

	Can bundle core system-level shared
libraries as packages, and resolve
dependencies

Introducing conda-build

	Orchestrates environment creation, activation, and build/test processes

	Can build conda packages and/or wheels

	Separate project from conda, but very tightly integrated

	Open-source, actively developed:

https://github.com/conda/conda-build

Excercise: let’s use conda-build

conda install conda-build

	Windows only:

conda install m2-patch posix

	All platforms:

cd python-packaging-tutorial/conda_build_recipes
conda build 01_minimum

What happened?

	Templates filled in, recipe interpreted

	Build environment created (isolated)

	Build script run

	New files in build environment bundled into package

	Test environment created (isolated)

	Tests run on new package

	cleanup

Obtaining recipes

	Existing recipes (best)

	https://github.com/AnacondaRecipes

	https://github.com/conda-forge

	Skeletons from other repositories
(PyPI, CRAN, CPAN, RPM)

	DIY

Anaconda Recipes

	https://github.com/AnacondaRecipes

	Official recipes that Anaconda uses for building packages

	Since Anaconda 5.0, forked from conda-forge recipes.

	Intended to be compatible with conda-forge long-term

	Presently, ahead of conda-forge on use of conda-build 3 features

Conda-forge

[image: _images/conda-forge.png]
https://conda-forge.org

	https://conda-forge.org

	Numfocus-affiliated community organization made up of volunteers

	One github repository per recipe

	Fine granularity over permissions

	Heavy use of automation for building, deploying, and updating recipes

	Free builds on public CI services (TravisCI, CircleCI, Appveyor)

Skeletons

	Read metadata from upstream repository

	Translate that into a recipe

	Will save you some boilerplate work

	Might work out of the box

	(should not assume automatic, though)

conda skeleton

conda skeleton pypi:

conda skeleton pypi <package name on pypi>

conda skeleton pypi click

conda skeleton pypi --recursive pyinstrument

conda skeleton cran

conda skeleton cran <name of pkg on cran>

conda skeleton cran acs

conda skeleton cran --recursive biwt

When all else fails, write a recipe

Only required section:

package:
 name: abc
 version: 1.2.3

Exercise: create a basic recipe

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/01_minimum

Source types

	url

	git

	hg

	svn

	local path

meta.yaml source section [https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#source-section]

Exercise: point your recipe at local files

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/02_local_source

Building packages

Lots of ways, but let’s start simple:

	build.sh (unix)

	bld.bat (windows)

Filenames are of paramount importance here

build.sh: stuff to run on mac/linux

	It’s a shell script: do what you want

	Snapshot files in $PREFIX before running script; again after

	Files that are new in $PREFIX are what make up your package

	Several useful env vars for use in build.sh: https://conda.io/docs/user-guide/tasks/build-packages/environment-variables.html

bld.bat: stuff to run on windows

	It’s a batch script: do what you want

	Snapshot files in %PREFIX% before running script; again after

	Files that are new in %PREFIX% are what make up your package

	Several useful env vars for use in bld.bat: https://conda.io/docs/user-guide/tasks/build-packages/environment-variables.html

Exercise: Copy a file into the package

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/03_copy_file

Build options

	number:
	version reference of recipe (as opposed to version of source code)

	script:
	quick build steps, avoid separate build.sh/bld.bat files

	skip:
	skip building recipe on some platforms

	entry_points:
	python code locations to create executables for

	run_exports:
	add dependencies to downstream consumers to ensure compatibility

meta.yaml build section [https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#build-section]

Requirements

[image: _images/build_host_run.png]

Build requirements

	Tools to build packages with; things that don’t directly go into headers or linking

	Compilers

	autotools, pkg-config, m4, cmake

	archive tools

Host requirements

	External dependencies for the package that need to be present at build time

	Headers, libraries, python/R/perl

	Python deps used in setup.py

	Not available at runtime, unless also specified in run section

Run requirements

	Things that need to be present when the package is installed on the end-user system

	Runtime libraries

	Python dependencies at runtime

	Not available at build time unless also specified in build/host section

Requirements: build vs. host

	Historically, only build

	Still fine to use only build

	host introduced for cross compiling

	host also useful for separating build tools from packaging environment

If in doubt, put everything in host

	build is treated same as host for old-style recipes
(only build, no {{ compiler() }})

	packages are bundled from host env, not build env

Exercise: use Python in a build script

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/04_python_in_build

Post-build Tests

	Help ensure that you didn’t make a packaging mistake

	Ideally checks that necessary shared libraries are included as dependencies

Dependencies

Describe dependencies that are required for the tests
(but not for normal package usage)

test:
 requires:
 - pytest

Post-build tests: test files

	All platforms:
	run_test.pl, run_test.py, run_test.r, run_test.lua

	Windows:
	run_test.bat

	Linux / Mac:
	run_test.sh

Post-build tests

	May have specific requirements

	May specify files that must be bundled for tests (source_files)

	imports:
language specific imports to try, to verify correct installation

	commands:
sequential shell-based commands to run (not OS-specific)

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#test-section

Import Tests

test:
 imports:
 - dateutil
 - dateutil.rrule
 - dateutil.parser
 - dateutil.tz

Test commands

test:
 commands:
 - curl --version
 - curl-config --features # [not win]
 - curl-config --protocols # [not win]
 - curl https://some.website.com

Exercise: add some tests

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/05_test_python

Outputs - more than one pkg per recipe

package:
 name: some-split
 version: 1.0

outputs:
 - name: subpkg
 - name: subpkg2

	Useful for consolidating related recipes that share (large) source

	Reduce update burden

	Reduce build time by keeping some parts of the build, while looping over other parts

	Also output different types of packages from one recipe (wheels)

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#outputs-section

About section

[image: _images/about_section.png]

Extra section: free-for-all

	Used for external tools or state management

	No schema

	Conda-forge’s maintainer list

	Conda-build’s notion of whether a recipe is “final”

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#extra-section

Conditional lines (selectors)

some_content # [some expression]

	content inside [...] is eval’ed

	namespace includes OS info, python info, and a few others

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#preprocessing-selectors

Exercise: Limit a Recipe to Only Linux

package:
 name: example_skip_recipe
 version: 1.0

 build:
 skip: True

package:
 name: example_skip_recipe
 version: 1.0

 build:
 skip: True # [not linux]

Intro to Templating with Jinja2

	Fill in information dynamically

	git tag info

	setup.py recipe data

	centralized version numbering

	string manipulation

How does Templating Save You Time?

{% set version = "3.0.2" %}

package:
 name: example
 version: {{ version }}
source:
 url: https://site/{{version}}.tgz

Jinja2 Templating in meta.yaml

Set variables:

{% set somevar=”someval” %}

Use variables:

{{ somevar }}

Expressions in {{ }} are roughly python

Jinja2 conditionals

Selectors are one line only. When you want to toggle a block, use jinja2:

{%- if foo -%}

toggled content

on many lines

{% endif %}

Exercise: use Jinja2 to reduce edits

package:
 name: abc
 version: 1.2.3

source:
 url: http://my.web/abc-1.2.3.tgz

{% set version=”1.2.3” %}
package:
 name: abc
 version: {{ version }}

source:
 url: http://w/abc-{{version}}.tgz

Variants: Jinja2 on steroids

Matrix specification in yaml files

somevar:
 - 1.0
 - 2.0

anothervar:
 - 1.0

All variant variables exposed in jinja2

In meta.yaml,

{{ somevar }}

And this loops over values

Exercise: try looping

meta.yaml:

package:
 name: abc
 version: 1.2.3

build:
 skip: True # [skipvar]

conda_build_config.yaml:

skipvar:
 - True
 - False

meta.yaml:

package:
 name: abc
 version: 1.2.3

requirements:
 build:
 - python {{ python }}

 run:
 - python {{ python }}

conda_build_config.yaml:

python:
 - 2.7
 - 3.6

meta.yaml:

package:
 name: abc
 version: 1.2.3

requirements:
 build:
 - python
 run:
 - python

conda_build_config.yaml:

python:
 - 2.7
 - 3.6

Jinja2 functions

loading source data:

load_setup_py_data

load_file_regex

Dynamic Pinning:

pin_compatible

pin_subpackage

Compatibility Control:

compiler

cdt

Loading setup.py data

{% set setup_data = load_setup_py_data() %}

package:
 name: abc
 version: {{ setup_data[‘version’] }}

	Primarily a development recipe tool - release recipes specify version instead, and template source download link

	Centralizing version info is very nice - see also versioneer, setuptools_scm, autover, and many other auto-version tools

Loading arbitrary data

{% set data = load_file_regex(load_file='meta.yaml',
 regex_pattern='git_tag: ([\\d.]+)') %}

package:
 name: conda-build-test-get-regex-data
 version: {{ data.group(1) }}

	Useful when software provides version in some arbitrary file

	Primarily a development recipe tool - release recipes specify version instead, and template source download link

Dynamic pinning

Use in meta.yaml, generally in requirements section:

requirements:
 host:
 - numpy
 run:
 - {{ pin_compatible(‘numpy’) }}

Use in meta.yaml, generally in requirements section:

requirements:
 host:
 - numpy
 run:
 - {{ pin_compatible(‘numpy’) }}

	Pin run req based on what is present at build time

Dynamic pinning in practice

Used a lot with numpy:

https://github.com/AnacondaRecipes/scikit-image-feedstock/blob/master/recipe/meta.yaml

Dynamic pinning within recipes

Refer to other outputs within the same recipe

	When intradependencies exist

	When shared libraries are consumed by other libraries

https://github.com/AnacondaRecipes/aggregate/blob/master/clang/meta.yaml

Compilers

Use in meta.yaml in requirements section:

requirements:
 build:
 - {{ compiler(‘c’) }}

	explicitly declare language needs

	compiler packages can be actual compilers, or just activation scripts

	Compiler packages utilize run_exports to add necessary runtime dependencies automatically

Why put compilers into Conda?

	Explicitly declaring language needs makes reproducing packages with recipe simpler

	Binary compatibility can be versioned and tracked better

	No longer care what the host OS used to build packages is

	Can still use system compilers - just need to give conda-build information on metadata about them. Opportunity for version check enforcement.

run_exports

“if you build and link against library abc, you need a runtime dependency on library abc”

This is annoying to keep track of in recipes.

[image: _images/run_exports.png]

	Add host or run dependencies for downstream packages that depend on upstream that specifies run_exports

	Expresses idea that “if you build and link against library abc, you need a runtime dependency on library abc”

	Simplifies version tracking

Exercise: make a run_exports package

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/06_has_run_exports

Exercise: use a run_exports package

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/07_uses_run_exports

Uploading packages: anaconda.org

	Sign-up:

	https://anaconda.org/

	Requirement:

	conda install anaconda-client

	CLI: anaconda upload path-to-package

	conda-build auto-upload:

	conda config --set anaconda_upload True

Fin

Extra slides

Source Patches

	patch files live alongside meta.yaml

	create patches with:

	diff

	git diff

	git format-patch

meta.yaml source section [https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#source-section]

Exercise: let’s make a patch

package:
 name: test-patch
 version: 1.2.3

source:
 url: https://zlib.net/zlib-1.2.11.tar.gz

build:
 script: exit 1

	Builds that fail leave their build folders in place

	look in output for source tree in:

*/conda-bld/test-patch_<numbers>/work

	cd there

git init

git add *

git commit -am “init”

edit file of choice

git commit -m “changing file because …”

git format-patch HEAD~1

	copy that patch back alongside meta.yaml

	modify meta.yaml to include the patch

Multiple sources

source:
 - url: https://package1.com/a.tar.bz2
 folder: stuff
 - url: https://package1.com/b.tar.bz2
 folder: stuff
 patches:
 - something.patch
 - git_url: https://github.com/conda/conda-build
 folder: conda-build

meta.yaml source section [https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#source-section]

Outputs rules

	List of dicts

	Each list must have name or type key

	May use all entries from build, requirements, test, about sections

	May specify files to bundle either using globs or by running a script

Outputs Examples

https://github.com/AnacondaRecipes/curl-feedstock/blob/master/recipe/meta.yaml

https://github.com/AnacondaRecipes/aggregate/blob/master/ctng-compilers-activation-feedstock/recipe/meta.yaml

Exercise: Split a Package

Curl is a library and an executable. Splitting them lets us clarify where Curl is only a build time dependency, and where it also needs to be a runtime dependency.

Starting point:

https://github.com/conda-forge/curl-feedstock/tree/master/recipe

Solution:

https://github.com/AnacondaRecipes/curl-feedstock/tree/master/recipe

Tutorial Content Updates

You will find here the list of changes integrated in the tutorial after it was
first given at the SciPy 2018 conference.

Changes are grouped in sections identified using YYYY-MM representing
the year and month when the related changes were done.

The sections are ordered from most recent to the oldest.

2018-08

Better handling data file in Exercise: A Small Example Package section

	Put package data in data directory.

	Reflect this change in the code.

	Add package_data to setup function.

2018-07

This is the first set of changes incorporating the feedback from attendees.

Making a Python Package

	Add directory setup_example/capitalize [https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/setup_example/capitalize]
discussed in Exercise: A Small Example Package section.

Building and Uploading to PyPI

	Update Installing a wheel tutorial adding Install a package from TestPyPI section.

Index

 nav.xhtml

 Table of Contents

 		
 The Sheer Joy of Packaging!

 		
 Tutorial Schedule

 		
 Outline

 		
 Agenda

 		
 0:00-00:10 Getting setup for this Tutorial

 		
 0:10-00:20 Overview of packaging

 		
 0:20-0:45 python packages: the setup.py file

 		
 0:45-1:00 Building and uploading to PyPI

 		
 1:00-1:10 Break

 		
 1:10-1:30 Exercises

 		
 1:30-2:00 Binaries and dependencies

 		
 2:00-2:45 Exercises

 		
 2:45-3:00 Break

 		
 3:00-3:15 Conda-build overview

 		
 3:15-3:30 Exercises

 		
 3:30-3:45 Exercises

 		
 3:45-4:00 Automated building with cloud-based CI services

 		
 Overview

 		
 Packages

 		
 What is a “package”?

 		
 Package Managers and Repos

 		
 Package types:

 		
 Source Packages

 		
 Binary Packages

 		
 Python Packaging

 		
 OS package managers:

 		
 Making a Python Package

 		
 Python Packages

 		
 Packages, modules, imports, oh my!

 		
 Packages

 		
 The module search path

 		
 Building Your Own Package

 		
 Why Build a Package?

 		
 What is a Package?

 		
 Python packaging tools:

 		
 setuptools

 		
 Where do I go to figure this out?

 		
 Basic Package Structure:

 		
 The setup.py File

 		
 What Does setup.py Do?

 		
 An example setup.py:

 		
 setup.cfg

 		
 Running setup.py

 		
 Develop mode

 		
 Under Development

 		
 Aside on pip and dependencies

 		
 Getting Started With a New Package

 		
 Exercise: A Small Example Package

 		
 capitalize

 		
 What are these files?

 		
 Setting up a package structure

 		
 Let’s Write a setup.py

 		
 Running the tests:

 		
 Making Packages the Easy Way

 		
 Handling Requirements

 		
 Requirements in setup.py

 		
 Requirements in requirements.txt

 		
 Requirements in setup.cfg (ideal)

 		
 Break time!

 		
 Building and Uploading to PyPi

 		
 Learning Objectives

 		
 In the following section we will …

 		
 Packaging Terminology 101

 		
 Introduction

 		
 PyPI

 		
 pip

 		
 PyPA

 		
 Source distribution

 		
 Built Distribution

 		
 Python Distribution: pure vs non-pure

 		
 Binary Distribution

 		
 Wheel

 		
 Wheels vs. Conda packages

 		
 Virtual Environment

 		
 Build system

 		
 Python Package Lifecycle

 		
 Tutorial

 		
 Introduction

 		
 Creating an environment

 		
 Building a source distribution

 		
 Building a wheel

 		
 Installing a wheel

 		
 Installing a source distribution

 		
 Publishing to PyPI

 		
 Exercises

 		
 Exercise 1: Prepare environment

 		
 Exercise 2: Build source distribution and wheel

 		
 Exercise 3: Publish artifacts on PyPI

 		
 Bonus Exercise 4: Publish artifacts automating authentication

 		
 Bonus Exercise 5: Setting up continuous integration

 		
 Resources

 		
 Where do I go to figure this out?

 		
 Binaries and Dependencies

 		
 Learning Objectives

 		
 In this section we will …

 		
 Tutorial

 		
 Introduction

 		
 Motivation

 		
 Build Components and Requirements

 		
 Scientific Python Build Tools

 		
 Exercises

 		
 Exercise 1: Build a Python Package with a C++ Extension Module

 		
 Exercise 2: Build a Python Package with a Cython Extension Module

 		
 Bonus Exercise 3: Build a Distributable Linux Wheel Package

 		
 Bonus Exercise 4: Setting up continuous integration

 		
 Conda Packages

 		
 Building Conda Packages

 		
 Wheels vs. Conda packages

 		
 Introducing conda-build

 		
 Excercise: let’s use conda-build

 		
 What happened?

 		
 Obtaining recipes

 		
 Anaconda Recipes

 		
 Conda-forge

 		
 Skeletons

 		
 conda skeleton

 		
 When all else fails, write a recipe

 		
 Exercise: create a basic recipe

 		
 Source types

 		
 Exercise: point your recipe at local files

 		
 Building packages

 		
 build.sh: stuff to run on mac/linux

 		
 bld.bat: stuff to run on windows

 		
 Exercise: Copy a file into the package

 		
 Build options

 		
 Requirements

 		
 Build requirements

 		
 Host requirements

 		
 Run requirements

 		
 Requirements: build vs. host

 		
 Exercise: use Python in a build script

 		
 Post-build Tests

 		
 Post-build tests: test files

 		
 Post-build tests

 		
 Import Tests

 		
 Test commands

 		
 Exercise: add some tests

 		
 Outputs - more than one pkg per recipe

 		
 About section

 		
 Extra section: free-for-all

 		
 Conditional lines (selectors)

 		
 Exercise: Limit a Recipe to Only Linux

 		
 Intro to Templating with Jinja2

 		
 How does Templating Save You Time?

 		
 Jinja2 Templating in meta.yaml

 		
 Jinja2 conditionals

 		
 Exercise: use Jinja2 to reduce edits

 		
 Variants: Jinja2 on steroids

 		
 All variant variables exposed in jinja2

 		
 Exercise: try looping

 		
 Jinja2 functions

 		
 Loading setup.py data

 		
 Loading arbitrary data

 		
 Dynamic pinning

 		
 Dynamic pinning in practice

 		
 Dynamic pinning within recipes

 		
 Compilers

 		
 Why put compilers into Conda?

 		
 run_exports

 		
 Exercise: make a run_exports package

 		
 Exercise: use a run_exports package

 		
 Uploading packages: anaconda.org

 		
 Fin

 		
 Extra slides

 		
 Source Patches

 		
 Exercise: let’s make a patch

 		
 Multiple sources

 		
 Outputs rules

 		
 Exercise: Split a Package

_images/cookiecutter.png
** COOKIECUTTER

_images/python-package-life-cycle.png
twine upload

Development tree

Develop

setup.py develop
pip install -e .

setup.py sdist

Source release

setup.py bdist_wheel

Binary wheels (*.whl)

PyPi

2

Upload source release

twine upload

Uploaded binary wheels

Conda

Canopy
/

Debian

Fedora

¥

v

setup.py install pip install

End users

_images/build_host_run.png
o D Cront DT on >

_images/conda-forge.png
“w
o D
CONDA-FORGE

_static/file.png

_images/run_exports.png
run_exports

Downstream recipe

requirements:
host:

- abc C
" 0N render opging

Upstream package “abc” (already built)

d“"pe”dencies‘\>

Downstream package

requirements:
host:
- abc 1.0 0
run:
- abc 1.0.%*

|

package:
name:
version: 1.0

abg

build:
run exports:
| — - abc 1.0.%*

\

_static/minus.png

_static/plus.png

_images/about_section.png
msarahan / packages / python se4
BRI
General purpose programming language

1

B License: PSF

@A Home: http://www.python.org/
<+— Provide this stuff

</> Development: https://docs.python.org/devguide/
Q Documentation: https://www.python.org/doc/versions/

