
The Joy of Packaging Documentation
Release 0.1

Assorted

Feb 24, 2023

CONTENTS

1 Packaging 3

i

ii

The Joy of Packaging Documentation, Release 0.1

Scipy 2018 Tutorial

CONTENTS 1

The Joy of Packaging Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

PACKAGING

Packaging from start to finish for both PyPI and conda

Warning: The list of changes integrated in the tutorial after it was first given at the SciPy 2018 conference can be
found in the Tutorial Content Updates document.

1.1 Topics

1.1.1 Tutorial Schedule

Outline

How are we spending our afternoon?

Agenda

• 0:00-0:20 Getting setup and overview of packaging

• 0:20-0:45 python packages: the setup.py file

• Break

• 1:00-1:30 Building and uploading to PyPI

• 1:30-2:00 Binaries and dependencies

• 2:00-2:45 Exercises

• Break

• 3:00-3:15 Conda-build overview

• 3:15-3:45 Exercise

• 3:45-4:00 conda-forge

3

The Joy of Packaging Documentation, Release 0.1

0:00-00:10 Getting setup for this Tutorial

There is a repo for this tutorial here:

https://github.com/python-packaging-tutorial/python-packaging-tutorial

or:

http://bit.ly/JoyOfPackaging

And the materials are rendered as html here:

https://python-packaging-tutorial.github.io/python-packaging-tutorial/

(linked from the git repo)

Clone that repo now – so you can follow along.

git clone https://github.com/python-packaging-tutorial/python-packaging-tutorial.git

0:10-00:20 Overview of packaging

Overview

• What is a package, anyway?

• Source/binary

• Wheel vs conda packages

• PyPI/anaconda.org

0:20-0:45 python packages: the setup.py file

Making a Python Package

• Python packages – what are they?

• The setup.py file

• Specifying requirements

• When and how to “pin” requirements

• Let’s make a package!

0:45-1:00 Building and uploading to PyPI

Building and Uploading to PyPi

• Packaging Terminology 101

• Building and publishing a python distribution

4 Chapter 1. Packaging

https://github.com/python-packaging-tutorial/python-packaging-tutorial
http://bit.ly/JoyOfPackaging
https://python-packaging-tutorial.github.io/python-packaging-tutorial/

The Joy of Packaging Documentation, Release 0.1

1:00-1:10 Break

1:10-1:30 Exercises

• Prepare environment.

• Build source distribution and wheel.

• Publish artifacts on PyPI.

1:30-2:00 Binaries and dependencies

Binaries and Dependencies

• Why we build Python packages with native binaries: 1) performance and 2) library integration

• Different components of the binary build process and their role: headers, libraries, compilers, linkers, build
systems, system introspection tools, package managers

• Basic requirements for binary compatibility: a) C-runtime library compatibility and b) shared library com-
patibilty

• Joyous tools: scikit-build’s role in coordinating components of the binary build process and conda’s role in
resolving dependencies and creating compatible platform binaries

2:00-2:45 Exercises

• Build a Python package with a C++-based C-extension.

• Build a Python package with a Cython-based C-extension.

• Build a distributable Linux wheel package.

2:45-3:00 Break

3:00-3:15 Conda-build overview

Conda Packages

3:15-3:30 Exercises

• Write a conda recipe for the sample package from previous exercises (pure python)

• noarch packages

• Upload to anaconda cloud

1.1. Topics 5

The Joy of Packaging Documentation, Release 0.1

3:30-3:45 Exercises

• Recipe for package with compiled extensions

• Add compiled extension (source will be provided to students) to sample package

• Modify recipe, if needed

• Rebuild the package

• Version pinning (python, numpy)

• Split packages - multi-ecosystem ones

• Compiler packages + pin_downstream

• Interoperation with scikit-build

3:45-4:00 Automated building with cloud-based CI services

conda-forge (optional; as time allows)

CI service overview & Conda-forge – what are the pieces and how do they fit together?

• Recipe format

• staged-recipes

• feedstocks

• Re-rendering and conda-smithy

• Updating package when new version released

• Future direction/community needs

• Invitation to sprints

• Contributing to Conda-forge

• Intro to conda-forge: staged-recipes, maintainer role, contributing to an existing package

• conda-smithy lint/rerender

• Example to go from the conda-skeleton to a PR on staged-recipes

• Comment on some special cases: cython extensions, non-python pkgs, the use of the CIs, etc.

• Exercise: put a package on staged-recipes

1.1.2 Overview

Packages

What is a “package”?

• In a broad sense, anything you install using your package manager

• Some kinds of packages have implied behavior and requirements

• Unfortunate overloading: python “package”: a folder that python imports

6 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

Package Managers and Repos

• Many package managers: some OS specific:

– apt, yum, dnf, chocolatey, homebrew, etc.

• Some language specific:

– NPM, pip, RubyGems

• And there are many online repositories of packages:

– PyPI, anaconda.org, CRAN, CPAN

But they all contain:

• Some form of dependency management

• Artifact and/or source repository

The idea is that you install something, and have it just work.

Package types:

A package can be essentially in two forms:

• source

• binary

Focusing now on the Python world:

As Python is a dynamic language, this distinction can get a bit blurred:

There is little difference between a source and binary package for a pure python package

But if there is any compiled code in there, building from source can be a challenge:

• Binary packages are very helpful

Source Packages

A source package is all the source code required to build the package.

Package managers (like pip) can automatically build your package from source.

But:

• Your system needs the correct tools installed, compilers, build tools, etc

• You need to have the dependencies available

• Sometimes it takes time, sometimes a LONG time

1.1. Topics 7

The Joy of Packaging Documentation, Release 0.1

Binary Packages

A collection of code all ready to run.

• Everything is already compiled and ready to go – makes it easy.

But:

• It’s likely to be platform dependent

• May require dependencies to be installed

How do you manage that if the dependencies aren’t in the same language/system?

Python Packaging

There are two package managers widely used for Python.

pip: The “official” solution.

• Pulls packages from PyPI

• Handles both source and binary packages (wheels)

• Python only

conda: Widely used in the scipy community.

• Pulls packages from anaconda.org

• Binary only (does not compile code when installing)

• Supports other languages / libraries: C, Fortran, R, Perl, Java (anything, really)

• Manages Python itself!

OS package managers:

• Linux: apt, conda, dnf, homebrew, nix, pacman, spack, yum

• OS-X: conda, homebrew, macports, spack

• Windows: chocolatey, conda, cygwin, pacman (msys2)

Sometimes handle python packages – but we won’t talk about those here.

1.1.3 Making a Python Package

Specifying how to build your python package

8 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

Python Packages

What is a “package” in Python ?

Packages, modules, imports, oh my!

Modules

A python “module” is a single namespace, with a collection of values:

• functions

• constants

• class definitions

• really any old value.

A module usually corresponds to a single file: something.py

Packages

A “package” is essentially a module, except it can have other modules (and indeed other packages) inside it.

A package usually corresponds to a directory with a file in it called __init__.py and any number of python files or
other package directories:

a_package
__init__.py
module_a.py
a_sub_package
__init__.py
module_b.py

The __init__.py can be totally empty – or it can have arbitrary python code in it.

The code will be run when the package is imported – just like a module,

modules inside packages are not automatically imported. So, with the above structure:

import a_package

will run the code in a_package/__init__.py.

Any names defined in the __init__.py will be available in:

a_package.a_name

but:

a_package.module_a

will not exist. To get submodules, you need to explicitly import them:

import a_package.module_a

https://docs.python.org/3/tutorial/modules.html#packages

1.1. Topics 9

https://docs.python.org/3/tutorial/modules.html#packages

The Joy of Packaging Documentation, Release 0.1

The module search path

The interpreter keeps a list of all the places that it looks for modules or packages when you do an import:

import sys
for p in sys.path:

print p

You can manipulate that list to add or remove paths to let python find modules on a new place.

And every module has a __file__ name that points to the path it lives in. This lets you add paths relative to where
you are, etc.

NOTE: it’s usually better to use setuptools’ “develop” mode instead – see below.

Building Your Own Package

The very basics of what you need to know to make your own package.

Why Build a Package?

There are a bunch of nifty tools that help you build, install and distribute packages.

Using a well structured, standard layout for your package makes it easy to use those tools.

Even if you never want to give anyone else your code, a well structured package simplifies development.

What is a Package?

A collection of modules

. . . and the documentation

. . . and the tests

. . . and any top-level scripts

. . . and any data files required

. . . and a way to build and install it. . .

Python packaging tools:

distutils: included with python

from distutils.core import setup

Getting clunky, hard to extend, maybe destined for deprecation . . .

setuptools: for extra features, technically third party

• present in most modern Python installations

“The Python Packaging Authority” – PyPA

https://www.pypa.io/en/latest/

10 Chapter 1. Packaging

https://www.pypa.io/en/latest/

The Joy of Packaging Documentation, Release 0.1

setuptools

setuptools is an extension to distutils that provides a number of extensions:

from setuptools import setup

superset of the distutils setup

This buys you a bunch of additional functionality:

• auto-finding packages

• better script installation

• resource (non-code files) management

• develop mode

• a LOT more

http://pythonhosted.org//setuptools/

Where do I go to figure this out?

This is a really good guide:

Python Packaging User Guide:

https://packaging.python.org/

and a more detailed tutorial:

http://python-packaging.readthedocs.io/en/latest/

Follow one of them

There is a sample project here:

https://github.com/pypa/sampleproject

(this has all the complexity you might need. . .)

You can use this as a template for your own packages.

Here is an opinionated update – a little more fancy, but some good ideas:

https://blog.ionelmc.ro/2014/05/25/python-packaging/

Basic Package Structure:

package_name/
bin/
CHANGES.txt
docs/
LICENSE.txt
MANIFEST.in
README.txt
setup.py
package_name/

__init__.py
(continues on next page)

1.1. Topics 11

http://pythonhosted.org//setuptools/
https://packaging.python.org/
http://python-packaging.readthedocs.io/en/latest/
https://github.com/pypa/sampleproject
https://blog.ionelmc.ro/2014/05/25/python-packaging/

The Joy of Packaging Documentation, Release 0.1

(continued from previous page)

module1.py
module2.py
test/

__init__.py
test_module1.py
test_module2.py

CHANGES.txt: log of changes with each release

LICENSE.txt: text of the license you choose (do choose one!)

MANIFEST.in: description of what non-code files to include

README.txt: description of the package – should be written in ReST or Markdown (for PyPi):

setup.py: the script for building/installing package.

bin/: This is where you put top-level scripts

(some folks use scripts)

docs/: the documentation

package_name/: The main package – this is where the code goes.

test/: your unit tests. Options here:

Put it inside the package – supports

$ pip install package_name
>> import package_name.test
>> package_name.test.runall()

Or keep it at the top level.

Some notes on that:

` Where to put Tests <http://pythonchb.github.io/PythonTopics/where_to_put_tests.html>`_

The setup.py File

Your setup.py file is what describes your package, and tells setuptools how to package, build and install it

It is python code, so you can add anything custom you need to it

But in the simple case, it is essentially declarative.

http://docs.python.org/3/distutils/

12 Chapter 1. Packaging

http://pythonchb.github.io/PythonTopics/where_to_put_tests.html
http://docs.python.org/3/distutils/

The Joy of Packaging Documentation, Release 0.1

What Does setup.py Do?

• Version & package metadata

• List of packages to include

• List of other files to include

• List of dependencies

• List of extensions to be compiled (if you are not using scikit-build.

An example setup.py:

from setuptools import setup

setup(
name='PackageName',
version='0.1.0',
author='An Awesome Coder',
author_email='aac@example.com',
packages=['package_name', 'package_name.test'],
scripts=['bin/script1','bin/script2'],
url='http://pypi.python.org/pypi/PackageName/',
license='LICENSE.txt',
description='An awesome package that does something',
long_description=open('README.txt').read(),
install_requires=[

"Django >= 1.1.1",
"pytest",

],
)

setup.cfg

Provides a way to give the end user some ability to customize the install

It’s an ini style file:

[command]
option=value
...

simple to read and write.

command is one of the Distutils commands (e.g. build_py, install)

option is one of the options that command supports.

Note that an option spelled --foo-bar on the command-line is spelled foo_bar in configuration files.

1.1. Topics 13

https://scikit-build.org

The Joy of Packaging Documentation, Release 0.1

Running setup.py

With a setup.py script defined, setuptools can do a lot:

Builds a source distribution (a tar archive of all the files needed to build and install the package):

python setup.py sdist

Builds wheels:

./setup.py bdist_wheel

(you need the wheel package for this to work:)

pip install wheel

Build from source:

python setup.py build

And install:

python setup.py install

Develop mode

Install in “develop” or “editable” mode:

python setup.py develop

or:

pip install .

Under Development

Develop mode is really, really nice:

$ python setup.py develop

or:

$ pip install -e ./

(the e stands for “editable” – it is the same thing)

It puts a link (actually *.pth files) into the python installation to your code, so that your package is installed, but any
changes will immediately take effect.

This way all your test code, and client code, etc, can all import your package the usual way.

No sys.path hacking

Good idea to use it for anything more than a single file project.

14 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

Install Development Install
Copies package into site-packages Adds a .pth file to site-packages, pointed at package source root
Used when creating conda packages Used when developing software locally
Normal priority in sys.path End of sys.path (only found if nothing else comes first)

https://grahamwideman.wikispaces.com/Python-+site-package+dirs+and+.pth+files

Aside on pip and dependencies

• pip does not currently have a solver: http://github.com/pypa/pip/issues/988

• pip may replace packages in your environment with incompatible versions. Things will break when that happens.

• use caution (and ideally, disposable environments) when using pip

Getting Started With a New Package

For anything but a single-file script (and maybe even then):

1. Create the basic package structure

2. Write a setup.py

3. pip install -e .

4. Put some tests in package/test

5. pytest in the test dir, or pytest --pyargs package_name

or use “Cookie Cutter”:

https://cookiecutter.readthedocs.io/en/latest/

Exercise: A Small Example Package

• Create a small package

– package structure

– setup.py

– python setup.py develop

– at least one working test

Start with the silly code in the tutorial repo in:

python-packaging-tutorial/setup_example/

or you can download a zip file here:

capitalize.zip

1.1. Topics 15

https://grahamwideman.wikispaces.com/Python-+site-package+dirs+and+.pth+files
http://github.com/pypa/pip/issues/988
https://cookiecutter.readthedocs.io/en/latest/

The Joy of Packaging Documentation, Release 0.1

capitalize

capitalize is a useless little utility that will capitalize the words in a text file.

But it has the core structure of a python package:

• a library of “logic code”

• a command line script

• a data file

• tests

So let’s see what’s in there:

$ ls
capital_mod.py test_capital_mod.py
cap_data.txt main.py
cap_script.py sample_text_file.txt

What are these files?

capital_mod.py
The core logic code

main.py
The command line app

test_capital_mod.py
Test code for the logic

cap_script.py
top-level script

cap_data.txt
data file

sample_text_file.txt
sample example file to test with.

Try it out:

$ cd capitalize/

$ python3 cap_script.py sample_text_file.txt

Capitalizing: sample_text_file.txt and storing it in
sample_text_file_cap.txt

I'm done

So it works, as long as you are in the directory with all the code.

16 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

Setting up a package structure

Create a basic package structure:

package_name/
bin/
README.txt
setup.py
package_name/

__init__.py
module1.py
test/

__init__.py
test_module1.py

Let’s create all that for capitalize:

Make the package:

$ mkdir capitalize

$ cd capitalize/

$ touch __init__.py

Move the code into it:

$ mv ../capital_mod.py ./
$ mv ../main.py ./

Create a dir for the tests:

$ mkdir test

Move the tests into that:

$ mv ../test_capital_mod.py test/

Create a dir for the script:

$ mkdir bin

Move the script into that:

$ mv ../cap_script.py bin

Create directory for data:

$ mkdir data

Move data into that:

$ mv ../cap_data.txt data

Now we have a package!

Let’s try it:

1.1. Topics 17

The Joy of Packaging Documentation, Release 0.1

$ python bin/cap_script.py
Traceback (most recent call last):
File "bin/cap_script.py", line 8, in <module>
import capital_mod

ImportError: No module named capital_mod

OK, that didn’t work. Why not?

Well, we’ve moved everytihng around:

The modules don’t know how to find each other.

Let’s Write a setup.py

#!/usr/bin/env python

from setuptools import setup

setup(name='capitalize',
version='1.0',
list folders, not files
packages=['capitalize',

'capitalize.test'],
scripts=['capitalize/bin/cap_script.py'],
package_data={'capitalize': ['data/cap_data.txt']},
)

(remember that a “package” is a folder with a __init__.py__ file)

That’s about the minimum you can do.

Save it as setup.py outside the capitalize package dir.

Install it in “editable” mode:

$ pip install -e ./
Obtaining file:///Users/chris.barker/HAZMAT/Conferences/SciPy-2018/PackagingTutorial/
→˓TutorialDay/capitalize
Installing collected packages: capitalize
Running setup.py develop for capitalize

Successfully installed capitalize

Try it out:

$ cap_script.py
Traceback (most recent call last):
File "/Users/chris.barker/miniconda2/envs/py3/bin/cap_script.py", line 6, in <module>
exec(compile(open(__file__).read(), __file__, 'exec'))

File "/Users/chris.barker/HAZMAT/Conferences/SciPy-2018/PackagingTutorial/TutorialDay/
→˓capitalize/capitalize/bin/cap_script.py", line 8, in <module>

import capital_mod
ModuleNotFoundError: No module named 'capital_mod'

Still didn’t work – why not?

We need to update some imports.

18 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

in cap_script.py:

import main
import capital_mod

should be:

from capitalize import main
from capitalize import capital_mod

and similarly in main.py:

from capitalize import capital_mod

And try it:

$ cap_script.py sample_text_file.txt

Traceback (most recent call last):
File ".../cap_script.py", line 6, in <module>
exec(compile(open(__file__).read(), __file__, 'exec'))

File ".../cap_script.py", line 8, in <module>
from capitalize import capital_mod

File "/.../capital_mod.py", line 35, in <module>
special_words = load_special_words(get_datafile_name())

File ".../capital_mod.py", line 21, in load_special_words
with open(data_file_name) as data_file:

FileNotFoundError: [Errno 2] No such file or directory: '.../capitalize/cap_data.txt'

Our script cannot find the data file. We changed it’s location but not the path in the capital_mod.py.

Let’s fix this. On line 32 replace:

return Path(__file__).parent / "cap_data.txt"

with:

return Path(__file__).parent / "data/cap_data.txt"

Running the tests:

Option 1: cd to the test dir:

$ cd capitalize/test/

$ pytest
$ ===================================
test session starts
====================================

...

Traceback:
test_capital_mod.py:14: in <module>

(continues on next page)

1.1. Topics 19

The Joy of Packaging Documentation, Release 0.1

(continued from previous page)

import capital_mod
E ModuleNotFoundError: No module named 'capital_mod'

Whoops – we need to fix that import, too:

from capitalize import capital_mod

And now we’re good:

$ pytest
======test session starts =====

collected 3 items

test_capital_mod.py ...

============== 3 passed in 0.06 seconds ============

You can also run the tests from anywhere on the command line:

$ pytest --pyargs capitalize

collected 3 items

capitalize/capitalize/test/test_capital_mod.py ... ␣
→˓[100%]

=============== 3 passed in 0.03 seconds ==========

Making Packages the Easy Way

To auto-build a full package structure:

Rather than doing it by hand, you can use the nifty “cookie cutter” project:

https://cookiecutter.readthedocs.io/en/latest/

And there are a few templates that can be used with that.

The core template written by the author:

https://github.com/audreyr/cookiecutter-pypackage

And one written by the author of the opinionated blog post above:

20 Chapter 1. Packaging

https://cookiecutter.readthedocs.io/en/latest/
https://github.com/audreyr/cookiecutter-pypackage

The Joy of Packaging Documentation, Release 0.1

https://github.com/ionelmc/cookiecutter-pylibrary

Either are great starting points.

conda install -c conda-forge cookiecutter

or

pip install cookiecutter

No time for that now :-(

Handling Requirements

Only the simplest of packages need only the Python standard library.

Requirements in setup.py

#!/usr/bin/env python
from distutils.core import setup

setup(name='mypkg',
version='1.0',
list folders, not files
packages=['mypkg', 'mypkg.subpkg'],
install_requires=['click'],
)

Requirements in requirements.txt

Common Mistake:

• requirements.txt often from pip freeze

• Pinned way too tightly. OK for env creation, bad for packaging.

• Donald Stufft (PyPA): Abstract vs. Concrete dependencies

Requirements in setup.cfg (ideal)

[metadata]
name = my_package
version = attr:
src.VERSION

[options]
(continues on next page)

1.1. Topics 21

https://github.com/ionelmc/cookiecutter-pylibrary
https://caremad.io/posts/2013/07/setup-vs-requirement

The Joy of Packaging Documentation, Release 0.1

(continued from previous page)

packages = find:
install_requires = click

Parse-able without execution, unlike setup.py

configuring setup using setup cfg files

Break time!

Up next: producing redistributable artifacts

1.1.4 Building and Uploading to PyPi

Learning Objectives

In the following section we will . . .

• Review the packaging terminology

• Understand how to build, package and publish a python package

Packaging Terminology 101

Introduction

This section reviews the key python packaging concepts and definitions.

PyPI

PyPI is the default Package Index for the Python community. It is open to all Python developers to consume and
distribute their distributions.

There are two instances of the Package Index:

• PyPI: Python Package Index hosted at https://pypi.org/

• TestPyPI: a separate instance of the Python Package Index (PyPI) that allows you to try out the distribution tools
and process without worrying about affecting the real index. TestPyPI is hosted at https://test.pypi.org

Reference: https://packaging.python.org/glossary/#term-python-package-index-pypi

22 Chapter 1. Packaging

http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files
https://packaging.python.org/glossary/#term-package-index
https://pypi.org/
https://test.pypi.org
https://packaging.python.org/glossary/#term-python-package-index-pypi

The Joy of Packaging Documentation, Release 0.1

pip

The PyPA recommended tool for installing Python packages.

A multi-faceted tool:

• It is an integration frontend that takes a set of package requirements (e.g. a requirements.txt file) and attempts to
update a working environment to satisfy those requirements. This may require locating, building, and installing
a combination of distributions.

• It is a build frontend that can takes arbitrary source trees or source distributions and builds wheels from them.

Reference: http://pip.readthedocs.io/

PyPA

The Python Packaging Authority (PyPA) is a working group that maintains many of the relevant projects in Python
packaging.

The associated website https://www.pypa.io references the PyPA Goals, Specifications and Roadmap as well as Python
Packaging User Guide, a collection of tutorials and references to help you distribute and install Python packages with
modern tools.

Reference: https://www.pypa.io

Source distribution

• Synonyms: sdist, Source release

• provides metadata + source files

• needed for installing

– by a tool like pip

– or for generating a Built Distribution

Reference: https://packaging.python.org/glossary/#term-source-distribution-or-sdist

Built Distribution

• Synonyms: bdist

• provides metadata + pre-built files

• only need to be moved (usually by pip) to the correct locations on the target system

Reference: https://packaging.python.org/glossary/#term-built-distribution

1.1. Topics 23

https://www.pypa.io/en/latest/
http://pip.readthedocs.io/
https://www.pypa.io
https://packaging.python.org/
https://packaging.python.org/
https://www.pypa.io
https://packaging.python.org/glossary/#term-source-distribution-or-sdist
https://packaging.python.org/glossary/#term-built-distribution

The Joy of Packaging Documentation, Release 0.1

Python Distribution: pure vs non-pure

• pure:

– Not specific to a CPU architecture

– No ABI (Application Binary Interface)

• non-pure

– ABI

– Platform specific

Reference: https://packaging.python.org/glossary/#term-module

Binary Distribution

• is a Built Distribution

• is non-pure

• uses platform-specific compiled extensions

Reference: https://packaging.python.org/glossary/#term-binary-distribution

Wheel

• a Built Distribution

• a ZIP-format archive with .whl extension

– {distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.
whl

• described by PEP 427

Reference: https://packaging.python.org/glossary/#term-wheel

Wheels vs. Conda packages

Wheels Conda packages
Employed by pip, blessed by PyPA Foundation of Anaconda ecosystem
Used by any python installation Used by conda python installations
Mostly specific to Python ecosystem General purpose (any ecosystem)
Good mechanism for specifying range of python com-
patibility

Primitive support for multiple python versions (noarch)

Depends on static linking or other system package man-
agers to provide core libraries

Can bundle core system-level shared libraries as pack-
ages, and resolve dependencies

To learn more about Conda, see Conda Packages section.

24 Chapter 1. Packaging

https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Application_binary_interface
https://packaging.python.org/glossary/#term-module
https://packaging.python.org/glossary/#term-binary-distribution
https://www.python.org/dev/peps/pep-0427/
https://packaging.python.org/glossary/#term-wheel

The Joy of Packaging Documentation, Release 0.1

Virtual Environment

An isolated Python environment that allows packages to be installed for use by a particular application, rather than
being installed system wide.

Learn more reading Creating Virtual Environments

Build system

Synonym: Build backend

• setuptools associated with the wheel package form the default build system. They support the creation of source
and built distributions based on a setup.py and optionally a setup.cfg file.

• flit is an alternative backend allowing to also create (and also publish) built distributions.

Python Package Lifecycle

1.1. Topics 25

https://packaging.python.org/tutorials/installing-packages/#creating-and-using-virtual-environments
https://setuptools.readthedocs.io
https://wheel.readthedocs.io
https://flit.readthedocs.io/en/latest/

The Joy of Packaging Documentation, Release 0.1

Tutorial

Introduction

This section discusses how to build python packages (or distributions) and publish them in a central repository to
streamline their installation. Finally, we conclude with exercises where we publish a package with the Test Python
Package Index.

Creating an environment

Before developing or building your distribution, we highly recommend to create a dedicated environment. This is
supported by both conda and pip.

Building a source distribution

By leveraging the setup.py script, setuptools can build a source distribution (a tar archive of all the files needed to
build and install the package):

$ python setup.py sdist

$ ls -1 dist
SomePackage-1.0.tar.gz

Building a wheel

$ pip wheel . -w dist

$ ls -1 dist
SomePackage-1.0-py2.py3-none-any.whl

This is equivalent to:

$ python setup.py bdist_wheel

Installing a wheel

• Install a package from PyPI:

$ pip install SomePackage
[...]
Successfully installed SomePackage

• Install a package from TestPyPI:

$ pip install -i https://test.pypi.org/simple SomePackage
[...]
Successfully installed SomePackage

• Install a package file:

26 Chapter 1. Packaging

http://test.pypi.org/
http://test.pypi.org/

The Joy of Packaging Documentation, Release 0.1

$ pip install SomePackage-1.0-py2.py3-none-any.whl
[...]
Successfully installed SomePackage

For more details, see QuickStart guide from pip documentation.

Installing a source distribution

$ pip install SomePackage-1.0.tar.gz
[...]

Successfully installed SomePackage

It transparently builds the associated wheel and install it.

Publishing to PyPI

twine utility is used for publishing Python packages on PyPI.

It is available as both a conda and a pypi package.

Learn more reading Using TestPiPY.

Exercises

Exercise 1: Prepare environment

• In the context of this tutorial, because participants already installed miniconda, we will create a conda environ-
ment and install packages using conda install SomePackage.

create and activate a dedicated environment named "hello-pypi"
conda create -n hello-pypi -y -c conda-forge
conda activate hello-pypi

install pip, wheel and twine
conda install -y twine wheel pip

• Create an account on TestPyPI (https://test.pypi.org/account/register/)

Exercise 2: Build source distribution and wheel

• Download (or checkout using git) the sources of our hello-pypi sample project:

conda install -y wget
wget https://github.com/python-packaging-tutorial/hello-pypi/archive/master.zip

• Extract sources

conda install -y unzip
unzip master.zip
cd hello-pypi-master

1.1. Topics 27

https://pip.pypa.io/en/stable/quickstart/
https://twine.readthedocs.io
https://packaging.python.org/guides/using-testpypi/
https://github.com/python-packaging-tutorial/python-packaging-tutorial#installation-instructions
https://test.pypi.org/account/register/
https://github.com/python-packaging-tutorial/hello-pypi/archive/master.zip
https://github.com/python-packaging-tutorial/hello-pypi

The Joy of Packaging Documentation, Release 0.1

• Modify package name so that it is unique

• Then, build the source distribution:

$ python setup.py sdist

• And finally, build the wheel:

$ pip wheel . -w dist

• Make sure artifacts have been generated in the dist subdirectory.

Exercise 3: Publish artifacts on PyPI

$ twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Bonus Exercise 4: Publish artifacts automating authentication

• Delete hello-pypi-master directory and extract archive again.

• Update name of package and rebuild source distribution and wheel.

• Create file .pypirc in your home directory with the following content:

[distutils]
index-servers=

pypi
testpypi

[testpypi]
repository: https://test.pypi.org/legacy/
username: your testpypi username
password: your testpypi password

[pypi]
username: your testpypi username
password: your testpypi password

• Publish package on TestPyPI:

$ twine upload --repository testpypi dist/*

Omitting the -repository testpypi argument allows to upload to the regular PyPI server.

28 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

Bonus Exercise 5: Setting up continuous integration

• See branch master-with-ci branch associated with hello-pypi example.

Resources

Where do I go to figure this out?

This is a really good guide:

Python Packaging User Guide:

https://packaging.python.org/

and a more detailed tutorial:

http://python-packaging.readthedocs.io/en/latest/

Follow one of them

There is a sample project here:

https://github.com/pypa/sampleproject

(this has all the complexity you might need. . .)

You can use this as a template for your own packages.

Here is an opinionated update – a little more fancy, but some good ideas:

https://blog.ionelmc.ro/2014/05/25/python-packaging/

Rather than doing it by hand, you can use the nifty “cookie cutter” project:

https://cookiecutter.readthedocs.io/en/latest/

And there are a few templates that can be used with that.

The core template written by the author:

https://github.com/audreyr/cookiecutter-pypackage

And one written by the author of the opinionated blog post above:

https://github.com/ionelmc/cookiecutter-pylibrary

Either are great starting points.

1.1.5 Binaries and Dependencies

Learning Objectives

In this section we will . . .

• Understand why we build Python packages with native binaries: 1) performance and 2) library integration

• Understand different components of the binary build process and their role: headers, libraries, compilers, linkers,
build systems, system introspection tools, package managers

• Understand basic requirements for binary compatibility: a) C-runtime library compatibility and b) shared
library compatibilty

1.1. Topics 29

https://github.com/python-packaging-tutorial/hello-pypi/tree/master-with-ci
https://packaging.python.org/
http://python-packaging.readthedocs.io/en/latest/
https://github.com/pypa/sampleproject
https://blog.ionelmc.ro/2014/05/25/python-packaging/
https://cookiecutter.readthedocs.io/en/latest/
https://github.com/audreyr/cookiecutter-pypackage
https://github.com/ionelmc/cookiecutter-pylibrary

The Joy of Packaging Documentation, Release 0.1

• Understand scikit-build’s role in coordinating components of the binary build process and conda’s role in re-
solving dependencies and creating compatible platform binaries

Tutorial

Introduction

This section discusses the creation of Python packages that contain native binaries.

First, we explain why building Python packages with native binaries is often desirable or necessary for scientific ap-
plications.

Next, an overview of the requirements to build native binaries is provided. Within this the context, we explain how
scikit-build and conda-build make life easier when we want to satisfy these requirements.

Finally, run an exercise where we build a native Python wth native binaries package and analyze the different stages of
the build process.

Motivation

Scientific computing applications demand higher performance than other domains because of the:

1. Size of the datasets to be analyzed

2. Complexity of the algorithms evaluated

In order to achieve high performance, programs can:

1. Minimized the number of operations on the CPU required to acheive a certain task

2. Execute in parallel to leverage multi-core, many-core, and GPGPU system architectures

3. Carefully and precisely manage memory allocation and use

Greater performance is achieved with native binaries over CPython because:

1. Tasks are compiled down to minimal processor operations, as opposed to high level programming language
instructions that must be interpreted

2. Parallel computing is not impared by CPython’s Global Interpreter Lock (GIL)

3. Memory can be managed explicitly and deterministically

Many existing scientific codes are written in programming languages other than Python. It is necessary to re-use
these libraries since:

• Resources are not available to re-implement work that is sometimes the result of multiple decades of effort from
multiple researchers.

• The scientific endeavor is built on the practice of reproducing and building on the top of the efforts of our
predecessors.

The lingua franca of computing is the C programming language because most operating systems themselves are
written in C.

As a consequence,

• Native binaries reflect characteristics and compatibility with of the C language

• The reference implementation of Python, CPython, is implemented in C

• CPython supports binary extension modules written in C

30 Chapter 1. Packaging

https://wiki.python.org/moin/GlobalInterpreterLock

The Joy of Packaging Documentation, Release 0.1

• Most other pre-compiled programming languages have a compatibility layer with C

• CPython is an excellent language to integrate scientific codes!

Common programming languages compiled into native libraries for scientific computing include:

• Fortran

• C

• C++

• Cython

• Rust

Build Components and Requirements

Build component categories:

build tools
Tools use in the build process, such as the compiler, linker, build systems, system introspection tool, and package
manager

Example compilers:

• GCC

• Clang

• Visual Studio

Compilers translate source code from a human readable to a machine readable form.

Example linkers:

• ld

• ld.gold

• link.exe

Linkers combine the results of compilers into a shared library that is executed at program runtime.

Example build systems:

• distutils.build_ext

• Unix Makefiles

• Ninja

• MSBuild in Visual Studio

Builds systems coordinate invocation of the compiler and linker, passing flags, and only out-of-date build targets are
built.

Example system introspection tools:

• CMake

• GNU Autotools

• Meson

1.1. Topics 31

The Joy of Packaging Documentation, Release 0.1

System introspection tools examine the host system for available build tools, the location of build dependencies, and
properties of the build target to generate the appropriate build system configuration files.

Example package managers:

• conda

• pip

• apt

• yum

• chocolatey

• homebrew

Package managers resolve dependencies so the required build host artifacts are available for the build.

build host artifacts
These are files required on the host system performing the build. This includes header files, *.h files, which
define the C program symbols, i.e. variable and function names, for the native binary with which we want to
integrate. This also usually includes the native binaries themselves, i.e. the executable or shared library. An
important exception to this rule is libpython, which we do not need on some platforms due to weak linking rules.

target system artifacts
These are artifacts intended to be run on the target system, typically the shared library C-extension.

When the build host system is different from the target system, we are cross-compiling.

For example, when we are building a Linux Python package on macOS is cross-compiling. In this case macOS is the
host system and Linux is the target system.

Distributable binaries must use a compatible C-runtime.

The table below lists the different C runtime implementations, compilers and their usual distribution mechanisms for
each operating systems.

Linux MacOSX Windows
C runtime GNU C Library (glibc) libSystem library Microsoft C run-time li-

brary
Compiler GNU compiler (gcc) clang Microsoft C/C++ Com-

piler (cl.exe)
Provenance Package manager OSX SDK within XCode

• Microsoft Visual
Studio

• Microsoft Windows
SDK

Linux C-runtime compatibility is determined by the version of glibc used for the build.

The glibc library shared by the system is forwards compatible but not backwards compatible. That is, a package built
on an older system will work on a newer system, while a package built on a newer system will not work on an older
system.

The manylinux project provides Docker images that have an older version of glibc to use for distributable Linux pack-
ages.

The C-runtime on macOS is determined by a build time option, the osx deployment target, which defines the minmum
version of macOS to support, e.g. 10.9.

A macOS system comes with support for running building binaries for its version of OSX and older versions of OSX.

32 Chapter 1. Packaging

https://scikit-build.readthedocs.io/en/latest/cmake-modules/targetLinkLibrariesWithDynamicLookup.html
https://en.wikipedia.org/wiki/GNU_C_Library
https://www.safaribooksonline.com/library/view/mac-os-x/0596003560/ch05s02.html
https://en.wikipedia.org/wiki/Microsoft_Windows_library_files#Runtime_libraries
https://en.wikipedia.org/wiki/Microsoft_Windows_library_files#Runtime_libraries
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Clang
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Xcode#Version_comparison_table
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/Microsoft_Windows_SDK
https://en.wikipedia.org/wiki/Microsoft_Windows_SDK
https://github.com/pypa/manylinux

The Joy of Packaging Documentation, Release 0.1

The XCode toolchain comes with SDK’s that support multiple target versions of OSX.

When building a wheel, this can be specified with –plat-name:

python setup.py bdist_wheel --plat-name macosx-10.6-x86_64

The C-runtime used on Windows is associated with the version of Visual Studio.

Architecture
CPython Version x86 (32-bit) x64 (64-bit)
3.5 and above Visual Studio 14 2015 Visual Studio 14 2015 Win64
3.3 to 3.4 Visual Studio 10 2010 Visual Studio 10 2010 Win64
2.7 to 3.2 Visual Studio 9 2008 Visual Studio 9 2008 Win64

Distributable binaries are also built to be compatible with a certain CPU architecture class. For example

• x86_64 (currently the most common)

• x86

• ppc64le

Scientific Python Build Tools

scikit-build is an improved build system generator for CPython C/C++/Fortran/Cython extensions.

scikit-build provides better support for additional compilers, build systems, cross compilation, and locating dependen-
cies and their associated build requirements.

The scikit-build package is fundamentally just glue between the setuptools Python module and CMake.

To build and install a project configured with scikit-build:

pip install .

To build and install a project configured with scikit-build for development:

pip install -e .

To build and package a project configured with scikit-build:

pip wheel -w dist .

Conda is an open source package management system and environment management system that runs on Windows,
macOS and Linux.

Conda quickly installs, runs and updates packages and their dependencies. Conda easily creates, saves, loads and
switches between environments on your local computer.

Conda was created for Python programs, but it can package and distribute software for any language.

scikit-build and conda abstract away and manage platform-specific details for you!

1.1. Topics 33

https://cmake.org/

The Joy of Packaging Documentation, Release 0.1

Exercises

Exercise 1: Build a Python Package with a C++ Extension Module

Download the hello-cpp example C++ project and build a wheel package with the commands:

cd hello-cpp
pip wheel -w dist --verbose .

Examine files referenced in the build output. What is the purpose of all referenced files?

Exercise 2: Build a Python Package with a Cython Extension Module

Download the hello-cython example C++ project and build a wheel package with the commands:

cd hello-cython
pip wheel -w dist --verbose .

Examine files referenced in the build output. What is the purpose of all referenced files?

Bonus Exercise 3: Build a Distributable Linux Wheel Package

If Docker is installed, create a dockcross manylinux bash driver script. From a bash shell, run:

cd into the hello-cpp project from Exercise 1
cd hello-cpp
docker run --rm dockcross/manylinux-x64 > ./dockcross-manylinux-x64
chmod +x ./dockcross-manylinux-x64

The dockcross driver script simplifies execution of commands in the isolated Docker build environment that use sources
in the current working directory.

To build a distributable Python 3.6 Python wheel, run:

./dockcross-manylinux-x64 /opt/python/cp36-cp36m/bin/pip wheel -w dist .

Which will output:

Processing /work
Building wheels for collected packages: hello-cpp
Running setup.py bdist_wheel for hello-cpp ... done
Stored in directory: /work/dist
Successfully built hello-cpp

and produce the wheel:

./dist/hello_cpp-1.2.3-cp36-cp36m-linux_x86_64.whl

To find the version of glibc required by the extension, run:

./dockcross-manylinux-x64 bash -c 'cd dist && unzip -o hello_cpp-1.2.3-cp36-cp36m-linux_
→˓x86_64.whl && objdump -T hello/_hello.cpython-36m-x86_64-linux-gnu.so | grep GLIBC'

34 Chapter 1. Packaging

https://github.com/python-packaging-tutorial/hello-cpp
https://github.com/python-packaging-tutorial/hello-cython
https://github.com/dockcross/dockcross
https://github.com/pypa/manylinux

The Joy of Packaging Documentation, Release 0.1

What glibc version compatibility is required for this binary?

manylinux: https://github.com/pypa/manylinux

Bonus Exercise 4: Setting up continuous integration

• See branch master-with-ci branch associated with hello-cpp example:

– Use scikit-ci for simpler and centralized CI configuration for Python extensions.

– Use scikit-ci-addons, a set of scripts useful to help drive CI.

– On CircleCI, use manylinux dockcross images including scikit-build, cmake and ninja packages.

1.1.6 Conda Packages

Building Conda Packages

A package system for anything. . .

Wheels vs. Conda packages

Wheels Conda packages
Employed by pip, blessed by PyPA Foundation of Anaconda ecosystem
Used by any python installation Used by conda python installations
Mostly specific to Python ecosystem General purpose (any ecosystem)
Good mechanism for specifying range of python com-
patibility

Primitive support for multiple python versions (noarch)

Depends on static linking or other system package man-
agers to provide core libraries

Can bundle core system-level shared libraries as pack-
ages, and resolve dependencies

Introducing conda-build

• Orchestrates environment creation, activation, and build/test processes

• Can build conda packages and/or wheels

• Separate project from conda, but very tightly integrated

• Open-source, actively developed:

https://github.com/conda/conda-build

1.1. Topics 35

https://github.com/pypa/manylinux
https://github.com/python-packaging-tutorial/hello-cpp/tree/master-with-ci
http://scikit-ci.readthedocs.io
http://scikit-ci-addons.readthedocs.org/
https://pypi.python.org/pypi/scikit-build
https://pypi.python.org/pypi/cmake
https://pypi.python.org/pypi/ninja
https://github.com/conda/conda-build

The Joy of Packaging Documentation, Release 0.1

Excercise: let’s use conda-build

conda install conda-build

• Windows only:

conda install m2-patch posix

• All platforms:

cd python-packaging-tutorial/conda_build_recipes
conda build 01_minimum

What happened?

• Templates filled in, recipe interpreted

• Build environment created (isolated)

• Build script run

• New files in build environment bundled into package

• Test environment created (isolated)

• Tests run on new package

• cleanup

Obtaining recipes

• Existing recipes (best)

– https://github.com/AnacondaRecipes

– https://github.com/conda-forge

• Skeletons from other repositories (PyPI, CRAN, CPAN, RPM)

• DIY

Anaconda Recipes

• https://github.com/AnacondaRecipes

• Official recipes that Anaconda uses for building packages

• Since Anaconda 5.0, forked from conda-forge recipes.

• Intended to be compatible with conda-forge long-term

• Presently, ahead of conda-forge on use of conda-build 3 features

36 Chapter 1. Packaging

https://github.com/AnacondaRecipes
https://github.com/conda-forge
https://github.com/AnacondaRecipes

The Joy of Packaging Documentation, Release 0.1

Conda-forge

https://conda-forge.org

• https://conda-forge.org

• Numfocus-affiliated community organization made up of volunteers

• One github repository per recipe

– Fine granularity over permissions

• Heavy use of automation for building, deploying, and updating recipes

• Free builds on public CI services (TravisCI, CircleCI, Appveyor)

Skeletons

• Read metadata from upstream repository

• Translate that into a recipe

• Will save you some boilerplate work

• Might work out of the box

– (should not assume automatic, though)

conda skeleton

conda skeleton pypi:

conda skeleton pypi <package name on pypi>

conda skeleton pypi click

conda skeleton pypi --recursive pyinstrument

conda skeleton cran

1.1. Topics 37

https://conda-forge.org
https://conda-forge.org

The Joy of Packaging Documentation, Release 0.1

conda skeleton cran <name of pkg on cran>

conda skeleton cran acs

conda skeleton cran --recursive biwt

When all else fails, write a recipe

Only required section:

package:
name: abc
version: 1.2.3

Exercise: create a basic recipe

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/01_
minimum

Source types

• url

• git

• hg

• svn

• local path

meta.yaml source section

Exercise: point your recipe at local files

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/02_local_
source

38 Chapter 1. Packaging

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/01_minimum
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/01_minimum
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#source-section
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/02_local_source
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/02_local_source

The Joy of Packaging Documentation, Release 0.1

Building packages

Lots of ways, but let’s start simple:

• build.sh (unix)

• bld.bat (windows)

Filenames are of paramount importance here

build.sh: stuff to run on mac/linux

• It’s a shell script: do what you want

• Snapshot files in $PREFIX before running script; again after

• Files that are new in $PREFIX are what make up your package

• Several useful env vars for use in build.sh: https://conda.io/docs/user-guide/tasks/build-packages/
environment-variables.html

bld.bat: stuff to run on windows

• It’s a batch script: do what you want

• Snapshot files in %PREFIX% before running script; again after

• Files that are new in %PREFIX% are what make up your package

• Several useful env vars for use in bld.bat: https://conda.io/docs/user-guide/tasks/build-packages/
environment-variables.html

Exercise: Copy a file into the package

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/03_copy_
file

Build options

number:
version reference of recipe (as opposed to version of source code)

script:
quick build steps, avoid separate build.sh/bld.bat files

skip:
skip building recipe on some platforms

entry_points:
python code locations to create executables for

run_exports:
add dependencies to downstream consumers to ensure compatibility

meta.yaml build section

1.1. Topics 39

https://conda.io/docs/user-guide/tasks/build-packages/environment-variables.html
https://conda.io/docs/user-guide/tasks/build-packages/environment-variables.html
https://conda.io/docs/user-guide/tasks/build-packages/environment-variables.html
https://conda.io/docs/user-guide/tasks/build-packages/environment-variables.html
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/03_copy_file
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/03_copy_file
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#build-section

The Joy of Packaging Documentation, Release 0.1

Requirements

Build requirements

• Tools to build packages with; things that don’t directly go into headers or linking

• Compilers

• autotools, pkg-config, m4, cmake

• archive tools

Host requirements

• External dependencies for the package that need to be present at build time

• Headers, libraries, python/R/perl

• Python deps used in setup.py

• Not available at runtime, unless also specified in run section

Run requirements

• Things that need to be present when the package is installed on the end-user system

• Runtime libraries

• Python dependencies at runtime

• Not available at build time unless also specified in build/host section

Requirements: build vs. host

• Historically, only build

• Still fine to use only build

• host introduced for cross compiling

• host also useful for separating build tools from packaging environment

If in doubt, put everything in host

• build is treated same as host for old-style recipes (only build, no {{ compiler() }})

• packages are bundled from host env, not build env

40 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

Exercise: use Python in a build script

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/04_
python_in_build

Post-build Tests

• Help ensure that you didn’t make a packaging mistake

• Ideally checks that necessary shared libraries are included as dependencies

Dependencies

Describe dependencies that are required for the tests (but not for normal package usage)

test:
requires:
- pytest

Post-build tests: test files

All platforms:
run_test.pl, run_test.py, run_test.r, run_test.lua

Windows:
run_test.bat

Linux / Mac:
run_test.sh

Post-build tests

• May have specific requirements

• May specify files that must be bundled for tests (source_files)

• imports: language specific imports to try, to verify correct installation

• commands: sequential shell-based commands to run (not OS-specific)

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#test-section

1.1. Topics 41

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/04_python_in_build
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/04_python_in_build
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#test-section

The Joy of Packaging Documentation, Release 0.1

Import Tests

test:
imports:

- dateutil
- dateutil.rrule
- dateutil.parser
- dateutil.tz

Test commands

test:
commands:

- curl --version
- curl-config --features # [not win]
- curl-config --protocols # [not win]
- curl https://some.website.com

Exercise: add some tests

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/05_test_
python

Outputs - more than one pkg per recipe

package:
name: some-split
version: 1.0

outputs:
- name: subpkg
- name: subpkg2

• Useful for consolidating related recipes that share (large) source

• Reduce update burden

• Reduce build time by keeping some parts of the build, while looping over other parts

• Also output different types of packages from one recipe (wheels)

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#outputs-section

42 Chapter 1. Packaging

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/05_test_python
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/05_test_python
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#outputs-section

The Joy of Packaging Documentation, Release 0.1

About section

Extra section: free-for-all

• Used for external tools or state management

• No schema

• Conda-forge’s maintainer list

• Conda-build’s notion of whether a recipe is “final”

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#extra-section

Conditional lines (selectors)

some_content # [some expression]

• content inside [...] is eval’ed

• namespace includes OS info, python info, and a few others

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#preprocessing-selectors

Exercise: Limit a Recipe to Only Linux

package:
name: example_skip_recipe
version: 1.0

build:
skip: True

1.1. Topics 43

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#extra-section
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#preprocessing-selectors

The Joy of Packaging Documentation, Release 0.1

package:
name: example_skip_recipe
version: 1.0

build:
skip: True # [not linux]

Intro to Templating with Jinja2

• Fill in information dynamically

– git tag info

– setup.py recipe data

– centralized version numbering

– string manipulation

How does Templating Save You Time?

{% set version = "3.0.2" %}

package:
name: example
version: {{ version }}

source:
url: https://site/{{version}}.tgz

Jinja2 Templating in meta.yaml

Set variables:

{% set somevar=”someval” %}

Use variables:

{{ somevar }}

Expressions in {{ }} are roughly python

Jinja2 conditionals

Selectors are one line only. When you want to toggle a block, use jinja2:

{%- if foo -%}

toggled content

on many lines
(continues on next page)

44 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

(continued from previous page)

{% endif %}

Exercise: use Jinja2 to reduce edits

package:
name: abc
version: 1.2.3

source:
url: http://my.web/abc-1.2.3.tgz

{% set version=”1.2.3” %}
package:
name: abc
version: {{ version }}

source:
url: http://w/abc-{{version}}.tgz

Variants: Jinja2 on steroids

Matrix specification in yaml files

somevar:
- 1.0
- 2.0

anothervar:
- 1.0

1.1. Topics 45

The Joy of Packaging Documentation, Release 0.1

All variant variables exposed in jinja2

In meta.yaml,

{{ somevar }}

And this loops over values

Exercise: try looping

meta.yaml:

package:
name: abc
version: 1.2.3

build:
skip: True # [skipvar]

conda_build_config.yaml:

skipvar:
- True
- False

meta.yaml:

package:
name: abc
version: 1.2.3

requirements:
build:
- python {{ python }}

run:
- python {{ python }}

conda_build_config.yaml:

python:
- 2.7
- 3.6

meta.yaml:

package:
name: abc
version: 1.2.3

requirements:
build:
- python

(continues on next page)

46 Chapter 1. Packaging

The Joy of Packaging Documentation, Release 0.1

(continued from previous page)

run:
- python

conda_build_config.yaml:

python:
- 2.7
- 3.6

Jinja2 functions

loading source data:

load_setup_py_data

load_file_regex

Dynamic Pinning:

pin_compatible

pin_subpackage

Compatibility Control:

compiler

cdt

Loading setup.py data

{% set setup_data = load_setup_py_data() %}

package:
name: abc
version: {{ setup_data[‘version’] }}

• Primarily a development recipe tool - release recipes specify version instead, and template source download link

• Centralizing version info is very nice - see also versioneer, setuptools_scm, autover, and many other
auto-version tools

Loading arbitrary data

{% set data = load_file_regex(load_file='meta.yaml',
regex_pattern='git_tag: ([\\d.]+)') %}

package:
name: conda-build-test-get-regex-data
version: {{ data.group(1) }}

• Useful when software provides version in some arbitrary file

• Primarily a development recipe tool - release recipes specify version instead, and template source download link

1.1. Topics 47

The Joy of Packaging Documentation, Release 0.1

Dynamic pinning

Use in meta.yaml, generally in requirements section:

requirements:
host:
- numpy

run:
- {{ pin_compatible(‘numpy’) }}

Use in meta.yaml, generally in requirements section:

requirements:
host:
- numpy

run:
- {{ pin_compatible(‘numpy’) }}

• Pin run req based on what is present at build time

Dynamic pinning in practice

Used a lot with numpy:

https://github.com/AnacondaRecipes/scikit-image-feedstock/blob/master/recipe/meta.yaml

Dynamic pinning within recipes

Refer to other outputs within the same recipe

• When intradependencies exist

• When shared libraries are consumed by other libraries

https://github.com/AnacondaRecipes/aggregate/blob/master/clang/meta.yaml

Compilers

Use in meta.yaml in requirements section:

requirements:
build:

- {{ compiler(‘c’) }}

• explicitly declare language needs

• compiler packages can be actual compilers, or just activation scripts

• Compiler packages utilize run_exports to add necessary runtime dependencies automatically

48 Chapter 1. Packaging

https://github.com/AnacondaRecipes/scikit-image-feedstock/blob/master/recipe/meta.yaml
https://github.com/AnacondaRecipes/aggregate/blob/master/clang/meta.yaml

The Joy of Packaging Documentation, Release 0.1

Why put compilers into Conda?

• Explicitly declaring language needs makes reproducing packages with recipe simpler

• Binary compatibility can be versioned and tracked better

• No longer care what the host OS used to build packages is

• Can still use system compilers - just need to give conda-build information on metadata about them. Opportunity
for version check enforcement.

run_exports

“if you build and link against library abc, you need a runtime dependency on library abc”

This is annoying to keep track of in recipes.

• Add host or run dependencies for downstream packages that depend on upstream that specifies run_exports

• Expresses idea that “if you build and link against library abc, you need a runtime dependency on library abc”

• Simplifies version tracking

Exercise: make a run_exports package

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/06_has_
run_exports

1.1. Topics 49

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/06_has_run_exports
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/06_has_run_exports

The Joy of Packaging Documentation, Release 0.1

Exercise: use a run_exports package

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/07_uses_
run_exports

Uploading packages: anaconda.org

• Sign-up:

– https://anaconda.org/

• Requirement:

– conda install anaconda-client

• CLI: anaconda upload path-to-package

• conda-build auto-upload:

– conda config --set anaconda_upload True

Fin

Extra slides

Source Patches

• patch files live alongside meta.yaml

• create patches with:

– diff

– git diff

– git format-patch

meta.yaml source section

Exercise: let’s make a patch

package:
name: test-patch
version: 1.2.3

source:
url: https://zlib.net/zlib-1.2.11.tar.gz

build:
script: exit 1

50 Chapter 1. Packaging

https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/07_uses_run_exports
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/conda_build_recipes/07_uses_run_exports
https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#source-section

The Joy of Packaging Documentation, Release 0.1

• Builds that fail leave their build folders in place

• look in output for source tree in:

*/conda-bld/test-patch_<numbers>/work

• cd there

git init

git add *

git commit -am “init”

edit file of choice

git commit -m “changing file because ...”

git format-patch HEAD~1

• copy that patch back alongside meta.yaml

• modify meta.yaml to include the patch

Multiple sources

source:
- url: https://package1.com/a.tar.bz2
folder: stuff

- url: https://package1.com/b.tar.bz2
folder: stuff
patches:
- something.patch

- git_url: https://github.com/conda/conda-build
folder: conda-build

meta.yaml source section

Outputs rules

• List of dicts

• Each list must have name or type key

• May use all entries from build, requirements, test, about sections

• May specify files to bundle either using globs or by running a script

Outputs Examples

https://github.com/AnacondaRecipes/curl-feedstock/blob/master/recipe/meta.yaml

https://github.com/AnacondaRecipes/aggregate/blob/master/ctng-compilers-activation-feedstock/recipe/meta.yaml

1.1. Topics 51

https://conda.io/docs/user-guide/tasks/build-packages/define-metadata.html#source-section
https://github.com/AnacondaRecipes/curl-feedstock/blob/master/recipe/meta.yaml
https://github.com/AnacondaRecipes/aggregate/blob/master/ctng-compilers-activation-feedstock/recipe/meta.yaml

The Joy of Packaging Documentation, Release 0.1

Exercise: Split a Package

Curl is a library and an executable. Splitting them lets us clarify where Curl is only a build time dependency, and where
it also needs to be a runtime dependency.

Starting point:

https://github.com/conda-forge/curl-feedstock/tree/master/recipe

Solution:

https://github.com/AnacondaRecipes/curl-feedstock/tree/master/recipe

If we have time: conda-forge

1.1.7 Tutorial Content Updates

You will find here the list of changes integrated in the tutorial after it was first given at the SciPy 2018 conference.

Changes are grouped in sections identified using YYYY-MM representing the year and month when the related changes
were done.

The sections are ordered from most recent to the oldest.

2018-08

Better handling data file in Exercise: A Small Example Package section

• Put package data in data directory.

• Reflect this change in the code.

• Add package_data to setup function.

2018-07

This is the first set of changes incorporating the feedback from attendees.

Making a Python Package

• Add directory setup_example/capitalize discussed in Exercise: A Small Example Package section.

Building and Uploading to PyPI

• Update Installing a wheel tutorial adding Install a package from TestPyPI section.

52 Chapter 1. Packaging

https://github.com/conda-forge/curl-feedstock/tree/master/recipe
https://github.com/AnacondaRecipes/curl-feedstock/tree/master/recipe
https://ocefpaf.github.io/2018-SciPy-python-packaging-tutorial/
https://github.com/python-packaging-tutorial/python-packaging-tutorial/tree/master/setup_example/capitalize

The Joy of Packaging Documentation, Release 0.1

1.2 Your Guides

Michael Sarahan:
Conda-build tech lead, Anaconda, Inc.

Matt McCormick:
Maintainer of dockcross, of Python packages for the Insight Toolkit (ITK)

Jean-Christophe Fillion-Robin:
Maintainer of scikit-build, scikit-ci, scikit-ci-addons and python-cmake-buildsystem

Filipe Fernandes:
Conda-forge core team, Maintainer of folium and a variety of libraries for ocean sciences.

Chris Barker:
Python instructor for the Univ. Washington Continuing Education Program, Contributor to conda-forge project.
Lead developer for assorted oceanography / oil spill packages.

Jonathan Helmus:
Conda-forge core team. Maintainer of Berryconda. Anaconda, Inc. Builds Tensorflow for fun.

1.2. Your Guides 53

	Packaging
	Topics
	Tutorial Schedule
	Outline
	Agenda
	0:00-00:10 Getting setup for this Tutorial
	0:10-00:20 Overview of packaging
	0:20-0:45 python packages: the setup.py file
	0:45-1:00 Building and uploading to PyPI
	1:00-1:10 Break
	1:10-1:30 Exercises
	1:30-2:00 Binaries and dependencies
	2:00-2:45 Exercises
	2:45-3:00 Break
	3:00-3:15 Conda-build overview
	3:15-3:30 Exercises
	3:30-3:45 Exercises
	3:45-4:00 Automated building with cloud-based CI services

	Overview
	Packages
	What is a “package”?
	Package Managers and Repos
	Package types:
	Source Packages
	Binary Packages
	Python Packaging
	OS package managers:

	Making a Python Package
	Python Packages
	Packages, modules, imports, oh my!
	Packages
	The module search path

	Building Your Own Package
	Why Build a Package?
	What is a Package?
	Python packaging tools:
	setuptools
	Where do I go to figure this out?
	Basic Package Structure:
	The setup.py File
	What Does setup.py Do?
	An example setup.py:
	setup.cfg
	Running setup.py
	Develop mode
	Under Development
	Aside on pip and dependencies
	Getting Started With a New Package
	Exercise: A Small Example Package
	capitalize
	What are these files?
	Setting up a package structure
	Let’s Write a setup.py
	Running the tests:
	Making Packages the Easy Way

	Handling Requirements
	Requirements in setup.py
	Requirements in requirements.txt
	Requirements in setup.cfg (ideal)
	Break time!

	Building and Uploading to PyPi
	Learning Objectives
	In the following section we will …

	Packaging Terminology 101
	Introduction
	PyPI
	pip
	PyPA
	Source distribution
	Built Distribution
	Python Distribution: pure vs non-pure
	Binary Distribution
	Wheel
	Wheels vs. Conda packages
	Virtual Environment
	Build system
	Python Package Lifecycle

	Tutorial
	Introduction
	Creating an environment
	Building a source distribution
	Building a wheel
	Installing a wheel
	Installing a source distribution
	Publishing to PyPI

	Exercises
	Exercise 1: Prepare environment
	Exercise 2: Build source distribution and wheel
	Exercise 3: Publish artifacts on PyPI
	Bonus Exercise 4: Publish artifacts automating authentication
	Bonus Exercise 5: Setting up continuous integration

	Resources
	Where do I go to figure this out?

	Binaries and Dependencies
	Learning Objectives
	In this section we will …

	Tutorial
	Introduction
	Motivation
	Build Components and Requirements
	Scientific Python Build Tools

	Exercises
	Exercise 1: Build a Python Package with a C++ Extension Module
	Exercise 2: Build a Python Package with a Cython Extension Module
	Bonus Exercise 3: Build a Distributable Linux Wheel Package
	Bonus Exercise 4: Setting up continuous integration

	Conda Packages
	Building Conda Packages
	Wheels vs. Conda packages
	Introducing conda-build
	Excercise: let’s use conda-build
	What happened?
	Obtaining recipes
	Anaconda Recipes
	Conda-forge
	Skeletons
	conda skeleton
	When all else fails, write a recipe
	Exercise: create a basic recipe
	Source types
	Exercise: point your recipe at local files
	Building packages
	build.sh: stuff to run on mac/linux
	bld.bat: stuff to run on windows
	Exercise: Copy a file into the package
	Build options
	Requirements
	Build requirements
	Host requirements
	Run requirements
	Requirements: build vs. host
	Exercise: use Python in a build script
	Post-build Tests
	Post-build tests: test files
	Post-build tests
	Import Tests
	Test commands
	Exercise: add some tests
	Outputs - more than one pkg per recipe
	About section
	Extra section: free-for-all
	Conditional lines (selectors)
	Exercise: Limit a Recipe to Only Linux
	Intro to Templating with Jinja2
	How does Templating Save You Time?
	Jinja2 Templating in meta.yaml
	Jinja2 conditionals
	Exercise: use Jinja2 to reduce edits
	Variants: Jinja2 on steroids
	All variant variables exposed in jinja2
	Exercise: try looping
	Jinja2 functions
	Loading setup.py data
	Loading arbitrary data
	Dynamic pinning
	Dynamic pinning in practice
	Dynamic pinning within recipes
	Compilers
	Why put compilers into Conda?
	run_exports
	Exercise: make a run_exports package
	Exercise: use a run_exports package
	Uploading packages: anaconda.org

	Fin
	Extra slides
	Source Patches
	Exercise: let’s make a patch
	Multiple sources
	Outputs rules
	Exercise: Split a Package

	Tutorial Content Updates
	2018-08
	Better handling data file in Exercise: A Small Example Package section

	2018-07
	Making a Python Package
	Building and Uploading to PyPI

	Your Guides

